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In this review we survey methods for detecting nonlinearities in stationary time series. These
methods are based on the estimation of so-called correlation integrals. These correlation inte-

grals provide

to the information one obtains from power sp.

a way of analyzing time series and reveal aspects which are often complementary
ectra and autocorrelations. So we also focus our

attention on the meaning and the estimation of the correlation integrals.

1. Introduction

In this paper we survey results, centered around
the question of how to decide whether a given sta-
tionary time series is adequately described by a lin-
ear stochastic model or contains nonlinearities (or
is even due to chaotic dynamics). This question
has been considered before by Brock et al. {1987],
LeBaron & Scheinkman {1989], see also Brock &
Dechert [1988] (one now refers to the BDS test)
and, from a different point of view, by Pijn [1990]
and Theiler et al. {1991]. As we shall see, in all
these approaches the correlation integral plays an
essential role.

In order to make the above problem somewhat
more concrete, we recall that it is known that deter-
ministic dynamical systems can produce time series
which look like random time series: a famous exam-
ple is the logistic map f(z) = 4z(1 — x). This map
defines a dynamical system with seemingly random
or stochastic behavior in the following sense. If we
take a point T € [0, 1}, then, with probability one,
the time series {zn} With z, = f"(%o) is random
in the sense that it is linearly uncorrelated: the
average of &n - Tatk, for any k > 0 is equal to the
square of the average of the 5. Such a time series
is reproduced in Fig. 1.
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For two recent surveys on dynamical systems
with such “stochastic” behavior see Casdagli [1991]
and Grasberger et al. {1991]. From these exam-
ples it follows that it is a nontrivial problem to de-
termine whether a given, seemingly random, time
series is really random or admits an explanation in
terms of a simple deterministic mechanism (like this
logistic map). The situation becomes even more
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Fig. 1. A time series produced by the logistic map: the

value of T, (vertical) is given as function of the numbet n

of iterates.
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complex once we realize that the complexity of a
time series may be due to a combination of non-
linearities (like in the logistic map) and random
perturbations. Here we study the more restricted
question whether a given time series shows an indi-
cation that it is not adequately described by a linear
model. The methods however are inspired by what
we know about chaotic dynamical systerns and their
seemingly random behavior.

To clarify the notion of a deterministic mecha-
nism, we review in the next section some concepts
of {chaotic) dynamical systems and the time series
which they can produce. We consider the evolutions
of a dynamical system (with finite dimensional state
space) as deterministic evolutions (although the ini-
tial state may be random).

After this review we discuss the correlation
integral in detail. This notion was introduced in
the context of dynamical systems, but is applicable
more generally. It provides a general method to ob-
tain information about a time series and as such it
is complementary to the spectral theory in which
time series are analysed in terms of power spectra
and autocorrelations (or autocovariance).

We then review the spectral theory of linear
stochastic gystems, their optimal (linear) predictors
and the relation of these predictors with time series
from (nonlinear) dynamical systems, We consider
the time series produced by such stochastic linear
systems as the prototype of random time series; in
fact we think they can be considered as the “most
random” time series with given autocorrelation (or
autocovariance) coefficients.

Finally we come to the main subject and
discuss the tests as considered by Scheinkman
et al. and Pijn et al. These tests deal with the
question whether a given time series has more
structure than a completely stochastic time series
with the same autocorrelation coefficients. This
notion “more structure” may sound somewhat
vague, but the test can also be interpreted as a way
to determine whether one has to reject the possi-
bility of a linear stochastic model or not. We also
discuss a refinement of these tests which is in some
sense a combination of both the test of Scheinkman
et al. and the test of Pijn et al,

Arguments in the main sections are quite infor-
mal. For rigorous mathematical arguments see the
appendix or the references.

At the end of this introduction I should Bay a
few words about the difference between “nonlinear”
and “chactic.” In extreme cases these notions are

clear: in a time series produced by the above logis-
tic map, there are nonlinear effects which produce
chaotic behavior; there is no stochasticity (or ran-
domness). On the other hand, if we take a time
series, produced by a stochastic linear model (this
notion will be defined later) and then take each
value to the third power, we have a time series in
which nonlinearity plays a role, but in which there
is no question of “deterministic chaos.” In general,
if we have systems in which the time evolution is de-
termined by rules involving both nonlinearity and
stochasticity, it is hard, and may be even in prin-
ciple impossible, to compare the effects of the non-
linearity and the stochasticity.

Another point which should be mentjoned
is that we are dealing here with general methods
(or parameter free methods), i.e., we do not test
whether, for example, a polynomial model (of given
degree and order) gives a better fit. There are
many investigations in this direction, especially in
the application of neural nets, and in a number of
cases they give much better results than the param-
eter free methods, but I think these parameter free
methods have their value: first because of their
theoretical interest, and second because there is of-
ten no clear justification for the assumption that
possible nonlinearities have the special form implic-
itly assumed when using such special methods.

2. Chaotic Dynamical Systems

For simplicity of exposition, we consider here only
time series with discrete time. The considerations
carry over to the case of continuous time with only
the obvious modifications,

A dynamical system is given by its state space X
and by its evolution map ¢ : X — X. For an initial
state g € X at time 0, the successive states at time
1, 2, etc are given by z; = p(zp), 7o = 2(zp), ete.
In order to relate the notion of time series to such
a dynamical system, we postulate that there is a
read-out function f: X — R, which assigns to each
state z € X the value f(z) € R which is recorded
or measured when the system is in the state z. So
for the initial state zo we obtain the fime series
{vn = f{¢"(z0))}. The sequence {"(z9)} of suc-
cessive states is called an evolution of the dynamical
system. In what follows, we always assume that X
is a finite dimensional vector space or a manifold,
that the evolution map ¢ and the read-out function
[ are differentiable and that for each initial state
o the corresponding evolution {z, = @™ (x0)}, for
n 2 0, remains in a bounded part of X.



We consider different kinds of evolutions. The
main types are:

« stationary evolutions, i.e., evolutions {z = To};

« periodic evolutions, i.e., evolutions {zn} such that
for some N > 0 we have Tn = ZniN for all n;

» quasiperiodic evolutions, i.e., evolutions {zn}
such that zn = F(wn,...,wyn) for some
multiperiodic function F' (periodic with period 1
in each of its variables) and constants w; to wy
such that 1,w;,...,w, are independent over
the rationals;

o chaotic evolutions, i.e., evolutions {z,} such that
there is a positive constant A > 0 so that for each
i # j, there is some m > 0 with p(Zitm, Tj4m) >
A; p denotes the distance function in the state
space X.

Apart from these types of evolutions we also
consider evolutions which are asymptotically
stationary, periodic or quasiperiodic: these are
evolutions converging to stationary, periodic or
quasiperiodic evolutions.

We do not claim that these are all the possible
types of evolution. In fact any orbit in the Feigen-
baum sattractor, see Collet & Eckmann [1980], is
neither of the above types. We could avoid this by
defining a chaotic evolution as one which is neither
(asymptotically) stationary, periodic or quasiperi-
odic, as in Ruelle & Takens [1971]. At present it
is however common to include in any definition of
chaoticity some form of sensitive dependence on ini-
tial conditions, as we have done in the above defi-
nition of a chaotic evolution. Also we believe that
the above types of evolutions are the most com-
mon evolutions which occur in a persistent way. In
any case, whenever necessary, we shall be more
explicit about the different types of evolution which
we consider. _

As we remarked before, evolutions give rise to
time series through the read-out function f. Also
for time series we distinguish the above types. The
definitions are the same, except that we have to
replace z, by yn = f(zn) and p by the distance in
R. Generically, the type of an evolution is the same
as the type of the corresponding time series. This is
a consequence of a much more general result, often
referred to as the reconstruction theorem [Packert
et al., 1980; Sauer et al., 1991; Takens, 1981] which
is of importance for later discussions in this paper,
and which we formulate below. For a more complete
discussion see Sauer et al. (1991], where the notion
of genericity is also discussed and refined.

Detecting Nonlinearities in Stationary Time Series 243

For a dynamical system on a state space X,

. which we assume to be a finite dimensional manifold

or vector space, given by an evolution operator ¢ :

X -+ X and a read-out function f : X — R we
define the reconstruction maps Recy : X — R* by

Recy(z) = (F(2), Flp(@)), ..., f@* (@) € RE.

The reconstruction theorem says that for generic
pairs (¢, f), Reci defines an embedding of X in
R* whenever & > 2-dim(X). This means that
for such k the state z is completely determined
by Recy ().

For a time series {yn = f(¢™{(x0))}, the image
of the evolution {xn} under the reconstruction map
Rec, is obtained by taking the successive vectors
(i, - - Vi+k—1), also called reconstruction vectors.
The reconstruction theorem then implies that, for
k sufficiently big and (i, f) generic, the limit set of
these reconstruction vectors is homeomorphic to the
50 called w-limit set of the evolution in X. {Usually
this limit set is an attractor, but that is not es-
sential for our considerations — note that even for
time series which are not generated by a dynamical
system, the limit set of the reconstruction vectors
is often denoted by “the attractor”.)

In less technical language, this reconstruction
result means the following. The reconstruction vec-
tors in R* accumulate on a set which has the same
shape as the set of states to which the “real” evo-
lution is attracted (in the state space). “The same
shape” is to be interpreted as homeomorphic, or
equal up to a continuous deformation. So we can
reconstruct this part of the state space (up to con-
tinuous deformations) from the time series without
even knowing the state space itself. If we however
do not know whether our time series is produced by
a finite dimensional dynamical system, or whether
our k is sufficiently big, then it is more difficult to
interpret the set of points in R formed by the
reconstruction vectors.

3. Correlation Integral

In this section we consider general time series,
not necessarily produced by a dynamical system as
defined above. Here and in what follows we will
assume that our time series satisfy some mild con-
ditions, namely that they are bounded and station-
ary. The first condition is clear (and only relevant
for infinite time series). The second condition is
more complicated. Informally speaking, a time se-
ries is stationary if its “character” does not change
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with time, e.g., its “average” should not gradually
increase (like the prices, in economic time series,
due to inflation). A formal definition is the follow-
ing. A bounded time series {yn} is stationary if
for each k, and for each continuous g : R* — R,
the average '

n
lim 7=t g Pirkm1)
i=1

n=—00

exists.

It is not hard to make examples of dynamical
systems producing time series which are not sta-
tionary if one allows evolutions which do not stay
in a bounded part of X. It is more surprising that
this is also possible in cases where all evolutions are
bounded in the future. It is however believed that
such situations are not persistent, in the sense that
by a small perturbation of the initial condition or
evolution map this pathology can be removed. Also
it has been proven that evolutions of many, even
chaotic, dynamical systems give rise to stationary
time series — for the evolutions on axiom A attrac-
tors this was proven in Ruelle [1976). The situation
is however not clarified in full generality.

QOur definition of stationarity and assumption
of boundedness imply that we have for each k a
measure uy such that for each continuous function
g:R — R we have

i)
Jim ™Y oy, piphe1) = f 9dutk .

i=1

Roughly speaking p(A) is the fraction of the
k-dimensional reconstruction vectors which happen
to lie in A — one also calls u; the measure defined
by the relative frequencies for k-dimensional recon-
struction vectors. We mention here that, indepen-
dently of the study of dynamical systems, the
evolutions of reconstruction vectors, at least in
dimension 2, were plotted by statisticians when
analysing time series. See Tong [1990], page 216~
217 and the references mentioned there.

For a bounded (and infinite) time series {yn}
we define the correlation integral Py.(¢) as the prob-
sbility that two, randomly and independently cho-
sen, k-dimensional reconstruction vectors are within
distance ¢ in the supremum norm. In more detail:
we define the distance p (i, 7) of the reconstruction
vectors starting at 4, j respectively as pp(i, j) =
M&X,=0,....k—1 |Vits —Yj+a]- Using this, we define the
fraction Py x(€) of the distances among the first N

reconstruction vectors which are smaller than £ as

Pry(e) = (number of pairs (i, j)
with0<i<ji<QN

and pi (i, 7) < €).

2
NN -1)

Then we define the correlation integral FPy(e) as
the limit
Pile) = N].iln Pyi(e).
—o0

One can prove that this last expression has the
following interpretation in terms of measures. Let
#ik X ptx denote the product measure on R* x R*, and
let U;(A) denote the e-neighborhood of the diagonal
in R¥ xR*. If the s x 41 measure of the boundary of
Ue(A) is zero, then the above limit converges to the
Hx X px measure of U {A). So that we have indeed
that Pi{¢) is the probability that two randomly and
independently chosen points {with respect to pug)
are within distance . In the exceptional case that
the boundary of U, (A) is not a measure-zero set, the
limit may not exist, but the liminf and the limsup
exist and are contained between the measure of the
interior and the measure of the closure of U,(A). In
what follows we shall ignore this exceptional case.

This notion of the correlation integral was first
introduced in connection with the time series pro-
duced by dynamical systems (see Grassberger &
Procaccia [1983] and Takens [1983]), as a method
to obtain information about invariants like dimen-
sion and entropy of attractors.

Only later was this same notion used by
Scheinkmann and others to test whether a given
time series might be modelled by a linear stochas-
tic model or not. In this paper we are mainly inter-
ested in these last aspects, which will be the subject
of Sec. 5. We conclude this section with a discussion
of the correlation dimension in terms of this corre-
lation integral. Although the correlation dimension
is not our subject here, it may be helpful for getting
an intuitive idea of the meaning of the correlation
integral.

For this discussion we consider a somewhat
more general situation: we do not need to restrict
ourselves to R*¥ with the measure pi as defined
above — the only thing we need is a set X on which
a distance function p and a probability measure u
are defined.

Also in this context we define the correlation
integral P(¢) as the probability that two randomly
(with respect to u) and independently chosen points
in X have distance less than e. Now we cbserve



that if X is a g-dimensional cube, with the distance
function p induced by the Euclidean distance and
such that p has a positive and continuous density
with respect to the Lebesgue measure on RY, then
P(g) ~ €9, or, to put it more precisely,

log(Ple))

g =lim Tog(e)

e~}
The same holds if X is a more general compact
g-dimensional manifold. For this reason one can
define the above limit, if it exists, as a dimension
of X, depending both on the metric {as defined by
the distance function p) and the measure p. This
is called the correlation dimension. Note that for
measures concentrated on more complicated sets
(fractals}, this correlation dimension may take non-
integer values. If we now think of X as a subset of
R* and of i as a measure concentrated on X then
we see that for smaller values of the correlation di-
mension, the values of P(c) converge slower to zero
and hence are relatively bigger. For what follows it
is important to note that if the correlation integral
P(g) of a measure, defined on R* converges to zero
much slower than e* for £ — 0, then the measure
must be very unevenly distributed on R* [like in
the case where it is concentrated on a set of lower
(correlation) dimension].

An important observation on the correlation di-
mension is the following. If we replace the distance
function p by a different one, denoted by p', such
that for some constent K and all z, ¥ € X we have

K~'p(z, y) < p'(z, ¥) £ Kp(z, v)

then we have for both distance functions the same
correlation dimension. This follows from the fact
that, denoting the correlation integral with respect
to p and p’ by P and P’ respectively,

P(K~Y) < P'(e) < P(Ke).

This has an important consequence when combined
with the previously mentioned reconstruction re-
sults. If {yn} is & time series, obtained from a dy-
namical system with evolution map ¢ and read-out
function f which are generic in the sense discussed
before so that for certain k, Rec, is an embedding,
then the correlation dimensior of the correspond-
ing measure y; on R* is a quantity which does not
depend on the read-out function f but describes an
intrinsic property of the dynamics. This is due to
the fact that different read-out functions, provided
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they are generic, give measures which can be trans-
formed into each other by diffeomorphisms, and dif-
feomorphisms, restricted to bounded sets, give only
& distortion of distances by a bounded factor.
Another consequence is that we may take
on R* any metric (derived from a norm) we want,
e.g., the Euclidean metric defined by the norm

|z| = 1/:1;§+~-+:.u£ or the supremum norm

defined by the norm |z| = max;=;,. k|zi|]. The
different choices differ only by a factor which is
bounded and bounded away from zero.

Besides these aspects, we have to mention that
the limit, occurring in the definition of the correla-
tion dimension, makes it hard, and often impossible,
to determine this quantity numerically.

Since the correlation integral plays an im-
portant role in ithe present paper, we discuss the
numerical estimation of this quantity, together with
the estimate of the error of these estimates, in
the appendix.

4. Spectral Theory

In this section we review the classical theory of time
series which is based on the interpretation of the
power spectrum and autocorrelation coefficients.
We consider again a time series {y,} which we as-
sume to be stationary. The power spectrum of such
a time series is defined as the square of the abso-
lute value of the Fourier transform of {y,}. Espe-
cially when the time series is infinite, this definition
needs some refinements (the possible convergence
problems which are involved are taken care of by
our stationarity assumption). Here we do not go
into these details since we shall mainly use the au-
tocorrelation coefficients, which contain the same
information as the power spectrum and which are
easier to define (and to interpret); for more details
on this classical time series theory see, for example,
Priestley [1081].

Before defining the autocorrelation coefficients
we make the average of our time series equal to zero.
Note that the average

n—1
E({snh = Jim 2 T vn
i=0

is defined for a stationary time series. From now on
we assume that this average has been made zero by
subtracting it from each term y,. We then define
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the autocovariance coefficients as
1 n
fiy= lim n 2 Y Virk

for k 2 0, and define the autocorrelation coeffi-
cients, assuming that Bp, the variance of the time
series, is nonzero as py = Ry /Ry. (For a time series
with an average different from zero, we define the
autocovariance and autocorrelation coefficients as
being equal to those of the corresponding time series
with zero average). We note that the above limits
also exist for stationary time series. Concerning the
interpretation of the autocorrelation coefficients we
have the following observations:

e for all k, we have —~1 < pp < l and if pp = 1
then {yn — yn4x| is zero on average; in this case
not all yn ~ yu4x have to be zero: it may be that
Yn = Yni-k just converges to zero. If pp = —1, then
{4n + Yn+k| is zero on average — in both cases the
time series is (asymptotically) periodic;

¢ for time series which are periodic or which are
asymptotic to a periodic time series, both R; and
px are periodic in &k and if k is a multiple of the
period, then p; = 1;

e for a time series which is quasiperiodic, (i.e.,
which is of the form yn = F(win,...,wmn) for
some continuous function F : R* — R which is
periodic with period 1 in each of its variables and
1, wi,..., w; independent over the rationals), we
also have both Ry and py quasiperiodic in k; p
is never equal to one, but its limsup is one. The
same holds for a time series which is asymptoti-
cally quasiperiodic;

e if g converges to zero for k — 0o, the time series
is chaotic — the converse is “usually true” though
there are exceptions, see the appendix.

In the rest of this section we assume, unless stated
otherwise, that the variance Rg of the time series
under consideration is equal to 1 so that we do not
have to distinguish between autocovariance and
autocorrelation coefficients.

We define a linear predictor to be a linear map
from R¥ to R, given by coefficients a1,..., ax. The
prediction for , according to this predictor is then

fn=01Yp1+ -+ AkYn—-k -

So it is a linear rule to predict a value of the time
series in terms of a finite (here k) number of past
values. The number k is called the order of the

predictor. We say that a linear predictor is opti-
mal, given the order and given the time series, if
the expectation value of the square of the predic-
tion errors (y, — §in)? is minimal. The variance of
a linear predictor is this expectation value of the
square of the prediction error. It is not hard to
verify that the coefficients of a linear optimal pre-
dictor of order k and its variance can be calculated
from the autocorrelation coefficients pg up to px and
that, given the optimal linear predictor of order k
and its variance, not assuming the time series has
variance fy equal to one, the autocovariance coef-
ficients Ry, ..., Ry can be determined. This means
that the information about a time series contained
in the optimal linear predictors is the same as the
information contained in the autocorrelation coeffi-
cients (and hence in the power spectrum). Although
these things are known, for completeness we de-
rive the above stated relations, between optimal
linear predictors and autocorrelation coefficients, in
the appendix.

Of course optimal linear predictors are also
defined, for time series whose average is nonzero.
In that case one has to allow for a constant term,
i.e., one has to consider an affine map from R**! to
R and one gets the prediction in the form

h =00+ a1yn-1+--- + GpYn—k -

Optimal linear predictors, as discussed above,
are especially suitable for time series which admit
a linear model (this notion will be discussed be-
low). However we first discuss how well they work
for time series produced by (nonlinear) determinis-
tic dynamical systems, as discussed in Sec. 2. For
these systems we distinguished several types of evo-
lutions and saw that under generic conditions we
had corresponding types of time series. If we have
a pericdic, or asymptotically periodic, time series,
say with period g, then it is clear that for k > ¢ the
optimal linear predictor of order k can be chosen
88 §n = Yn~¢ and this predictor is “perfect” in the
sense that its variance is zero (still in the case of an
asymptotically periodic time series, the prediction
errors are not zero). Next we consider quasiperi-
odic (or asymptotically quasiperiodic) time series.
In this case the autocorrelation coefficients pi reach
values arbitrarily close to one. So for increasing k,
the variances of the optimal linear predictors of or-
der k converge to zero for k — 0. In this case
we say that the linear predictors are “asymptoti-
cally perfect.” Finally in the case of chaotic time
series, we expect optimal linear predictors not to



be asymptotically perfect any more. It is not very
hard to prove that any time series, for which the
optimal linear predictors are not asymptotically
perfect, is chaotic in the sense we defined. The con-
verse is not true but counterexamples are probably
exceptional; for more details see the appendix. In
any case the notions of chaoticity and optimal
linear predictors not being asymptotically perfect
are strongly related.

The linear predictors can also be used fo
produce stochastic time series which have the same
correlation coefficients p, at least for values of
| < k, as a given time series. One simply takes
a time series generated by a model of the form

&

where ai, ..., ax are the coefficients of an optimal
linear predictor of order k for the given time se-
ries and where the &, are independently and iden-
tically distributed (iid) variables, taken from a
distribution with mean zero and variance equal to
the variance of the optimal predictor; we refer to
terms £, as the noise in the model. We call a model
of the form & a linear model. Usually one takes the
€n as normally distributed, but this would not be
consistent with our convention of considering only
bounded time series. One can however also take the
én from a uniform distribution. We point out that
the coefficients of the optimal linear predictor can
be determined from the spectrum or the autocor-
relation coefficients of a time series, but that the
spectrum or the autocorrelation coefficients give no
information on what the probability distribution of
the noise should be.

Time series generated by the above linear model
have the first k + 1 autocorrelation coefficients
20, - ., Px indeed equal to those of the original time
series. The following autocorrelation coefficients are
in general not zero: this would be incompatible with
a theorem which says that for any integer ! and reals
by,..., by we have

fin=a1n-1+--+ akfin—k + En

fn
> bibjpiy 2 0.

f.=1,..,1

One can show however that in a sense the p;, for
[ > k, are as small as is permitted with the above re-
striction. In many examples it turns out that there
is no significant difference between the autocorrela-
tion coefficients of a time series and the autocorrela-
tion coefficients of a time series made with a modet
of the above type with resonably low values of k.
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We shall see in the next section how to con-
struct, for a given time series, a model of type &
which gives time series that come closest to the orig-
ina) time series, and then show how to test whether
the original time series and those of the & model
are significantly different.

5. BDS Test and Alternatives

As we observed before, the correlation integral was
originally introduced as a means to calculate the
correlation dimension of an attractor in a determin-
istic system, see Grassberger & Procaccia [1983],
Takens {1983]. Later the correlation integral was
used in Brock et al. [1987] to test whether a given
time series might be iid (independently and identi-
cally distributed). The idea is as follows. If we con-
sider & time series {y,} then, if it is iid, we know
that the correlation integrals as defined in Sec. 3,
have to satisfy Pi(€) = (Pi1(g))*. From a finite part
of a time series, we can estimate these correlation
integrals and in this way determine whether a finite
segment of a time series gives an indication whether
the hypothesis of iid should be rejected. Of course
for this we need to know what the variance or stan-
dard deviation of our estimates for the correlation
integral is — we shall discuss this in the appendix.
As we remarked before, higher values of the correla-
tion integrals are a sign for more structure in a time
series. So in the case where the data are not inde-
pendent, we expect an inequality Pe(e) = (Pi(e))*.
This is what one observes usually, but. this is not a
theorem: in the appendix we shall give an example
where the opposite inequality holds.

In a situation where one has a time series which
is not iid, but for which one wants to test whether
it is described adequately by a linear model of the
form like & in the previous section, one proceeds as
follows {we assume still, as in the previous section,
that we have a time series with average zero). Let
the time series be {y} and the linear model, defined

by an optimal linear predictor, be

fn=a1fin—1+-** + @xfn-k + En - &

Then one constructs the residues
o = Yn — (G1¥n-1 + - + CkYn—x)

Now one can proceed with the residues as with the
time series which was expected to be iid: if the
residues are iid, then the linear model & is indeed
adequate. At this point we observe that if the orig-
inal time series was obtained from a determinis-
tic dynamical system as in Sec. 2, then still the
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same holds for the residues. The residues can be
obtained by changing the read-out function: If we
have a dynamical system with state space X, evolu-
tion map ¢ and read-out function f: X —Rsuch
that =, = ¢"(xp) and y,, = f(zn) then we obtain &
new read-out function in the following way. Define
F:X—>Rby

F(z) = fo*(z) — alftp"'l(z) -
— -1 f0' (z) — ar f(z) .

Then it is clear that r,, = F(zp,_1), so that, except
for a reindexing, the time series defined by F is the
same as the time series of the residues. This indi-
cates that the nonlinear or deterministic structure
remains if we pass to the residues. On the other
hand one can see from examples that the determin-
istic structure may be much harder to detect in the
residues than in the original time series, Such an
example is given in the appendix; see also Theiler
et al. [1991].

In general the above procedure can be applied
to any stationary time series. The order of the
predictor should be such that the autocorrelation
coefficients of the given time series and of a time
series produced by the linear model are not signif-
icantly different. A different criterion for the right
order of the optimal linear predictor is that the ay-
tocorrelation coefficients of the residues are suffi-
ciently close to zero, compared with the standard
deviation of the estimation procedure for these
autocorrelation coefficients.

An alternative approach was used by Pijn
[1990], in his thesis, and by Theiler et al, [1991].
Instead of modifying the original time series, he ob-
tains a new, and random, time series with the same
power spectrum, and hence the same correlation co-
efficients, and then uses the correlation integrals to
see whether the original and the random time se-
ries are significantly different or not. His way of
producing the random time series with the same
power spectrum is as follows. We first compute the
Fourier transform of our time series. The coeffi-
cients are complex numbers; we denote the coeff-
cient for the frequency w by a(w). Since we started
with a real time series, we have a(w) = a(—w). Now,
keeping the absolute values equal, we change the
arguments of the Fourier coefficients in a random
way, but so that the above relation a(w) = a(~w)
remains. Then we apply the inverse Fourier trans-
form. The new time series has by construction the
same power spectrum as the time series with which

we started. It can be shown that the residues, as de-
fined above, of this new time series are iid and have
even a normal distribution. The test consists of ver-
ifying whether the correlation integrals of the time
series, the original one and the one with randomized
Fourier coefficients are significantly different or not.

In fact this procedure was not used originally
by Pijn as an alternative for the BDS test, but as
& way to see whether the plots of the correlation
dimensions, were consistently significantly different
from those of the randomized signals. This method
has the advantage that we do not distort the poasi-
ble deterministic structure in the original data. A
disadvantage is that we compare with & random se-
ries whose residues are normally distributed. We
remove this in the second alternative for the BDS
test which we present below.

In this final alternative we proceed as follows.
For the original time series, we calculate an optimal
linear predictor as before and calculate the residues
{ri}. As before we denote the coefficients of the
linear predictor by q,.. -y 8k. These residues, to-
gether with the linear mode! defined by the optimal
linear predictor, are now used to produce a random
time series {wy,} as follows:

Wn = Q1Wp—1 4+« + QpWp_g + Te(n)

where Te(n) is chosen randomly from the set
{rs}. In this way we obtain a time series {wy}
which has the same autocorrelation coefficients gy,
at least for low values of k, as the original time
series while the residues are not automatically nor-
mal, but adapted to the original time series. Espe-
cially where we have reason to expect residues not
to be normally distributed, like (according to some
authors) in economic time series, this last method
may have some advantages. In the next section we
show an example where the variance in the estima-
tion of the correlation integrals is quite different for
this method, as compared with the method of Pijn
and Theiler et al. As before, the order of the op-
timal linear predictor one uses here should not be
too low. In fact one can take the order here rather
high since we do not have the problem of getting an
unwanted distortion of the deterministic structure.

The above discussion of the different alterna-
tives may look somewhat confusing. So I want to
conclude this section by discussing the basic princi-
Ples behind the different alternatives.

The correlation integral is used as a device to
distinguish time series which are otherwise, as far as



one can see from power spectra or autocorrelation
coefficients, of the same type.

There are two classes of transformation on time
series which were used in the present context:

o removing the autocorrelation coefficients, ie.,
making them zero, without destroying the “deter-
ministic structure” — this is done by teking the
residues with respect to an optimal linear predic-
tor; as the order of the predictor becomes higher,
it will become more difficult to detect any deter-
ministic structure;

e removing the “deterministic structure” without
changing the autocorrelation coefficients — there
are two ways of realizing this:

— random phase shifts in the Fourier coefficients
— in this way the Fourier spectrum remains
exactly the same and we get a time series as
with a linear model with normally distributed
noise;

— producing & new time series from a linear
stochastic model, obtained from an optimal lin-
ear predictor and noise taken from the residues
of the original time series; in this case the spec-
trum is only approximately preserved, but by
taking the order of the optimal linear predictor
higher this approximation can be made better.

All the different tests can be considered as pro-
ducing two time series and then testing whether
they are significantly different, using the correla-
tion integrals. These two time series are equal in
many aspects, but in one the deterministic struc-
ture is still present and in the other the determinis-
tiec structure is destroyed. In this way we think the
last of the three possibilities mentioned is optimal
in the sense that it combines the advantages of the
BDS test and the test of Pijn et al.

6. An Example
In this section we discuss the analysis, as described

above, for a time series of length 500 obtained from-

an experiment which was performed at the depart-
ment of Chemistry at the Technical University
Delft. We show below this time series, together
with the time series obtained by

o randomizing the phases of the Fourier coefficients;

e using a linear model defined by an optimal linear
predictor of order 20 and noise from the residues
as discussed in Sec. 5;

¢ calculating the residues.
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Already from these diagrams it seems to be clear
that the real time series is much more “systematic”
than the random ones (the second and third).

We now use the method of correlation integrals
to establish the difference between the original time
series and the two random ones. We estimate the
correlation integrals by taking 500 pairs of recon-
struction vectors in a “random” way from the set of
all possible pairs and counting the number of pairs
whose distance is less than a fixed value. (Below we
explain why we did not take all pairs of reconstruc-
tion vectors.) As we discuss in the appendix, it is
hard to give a good value for the variance of the er-
ror of this estimate for the correlation integral. For
this reason we use a Monte Carlo method: the con-
struction of the random time series ((b) and (c) in
the diagram) can be repeated so as to obtain differ-
ent samples of the same process. For the diagrams
below, we constructed 25 such samples, estimated
for each the correlation integrals (using 500 pairs of
reconstruction vectors), and determined from this
the average and variance of these estimations. The
results are shown in the following diagrams.

As we see, the main difference between the use
of the two random series is that in the last case
the variance of the estimation error is much bigger.
This indicates that it is indeed difficult to predict
this variance (without using a Monte Carlo method)
since in both cases the spectral properties are the
same. The fact that these variances are bigger in
the second case means that in the second case there
is less reason to claim that the linear model does
not give an adequate description of the original time
series. This is in agreement with the fact that in this
second case we used & better model: not only the
spectral properties, but also the noise, was derived
from the original time series.

We see that these results indicate that, even in
the second case, the linear model can be rejected
because, for embedding dimensions around 6 to 9
and at a length scale between 0.1 and 0.2, the es-
timates of the correlation integrals for the original
time series differ from the average estimate for the
random time series by about ten times the stan-
dard deviation or more. So not only can we reject
the linear models, but we also see on what length
scale the differences become apparent and that on
length scales above the order 0.25 the second linear
model is acceptable, but the first (with Gaussian
noise) is not. The fact that the discrepancies show
up mainly for embedding dimensions around 6 to 9
may be harder to interpret.
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Fig. 2. Time series (a), two random time series with the same spectral properties, .one obtained by randomizing Fourier
coefficients (b) and one by using a linear model with noise (c), and the time series of residues (d).
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Fig. 3. Estimates of correlation integrals — the length of the reconstruction vectors is the embedding dimension & —
horizontally we give the length scale ¢ (the time series were first rescaled in such a way that the difference between the
minimal and maximal value of the original time series became one) vertically we give the estimated correlation integrals Pe(c):
the solid line is for the original time series, the dashed lines for the randomized time series — the average estimate and the
averages plus and minus twice the standard deviation; the randomized time series are here obtained by randomizing the phases
of the Fourier coefficienta.
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Fig. 4. Same as the previous diagram, but using random time series obtained from a linear modet, defined by an optimal
linear predictor of order 20 and noise from the series of residues.
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Finally we have to say something about the fact
that we did our estimations only using 500 pairs
each time. We know in general that for a series
of N reconstruction vectors, we get the best esti-
mate for the correlation integral when using all the
N(N — 1)/2 pairs of different reconstruction vec-
tors. But we also know that even then the variance
of the estimate is of the order 1/N. In other words,
these N(N ~ 1)/2 pair are so strongly dependent
that they really count as approximately N indepen-
dent pairs. This is the reason that we expect that,
when taking not all the pairs, but only N pairs,
one does not lose very much. In any case, even if
we would get & much better estimate when using
all the pairs, if we conclude, as in the above case,
that the linear model has to be rejected, there is
no reason that such a conclusion has to be modi-
fied when using all pairs: using all pairs will make
the variances smaller and hence will lead to an even
stronger rejection. So only in a case where we could
not reject the linear model, might we consider the
much heavier calculations using all pairs of different
reconstruction vectors to see whether even then the
results do not indicate a difference.
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Appendix

In this appendix, which is more technical than the
main sections of the paper, we give mathematical
details of a number of the arguments and results
which we discussed in this paper.

A.l1. Estimating the correlation integral

The correlation integral was defined in Sec. 3 as
the limit
Pi(e) = lim Pyle),
N-—o0



where the Pyx(g) were defined in terms of the

k-dimensional reconstruction vectors. We shall first

assume that these reconstruction vectors can be
considered as independent and random samples
from the distribution gx on R*. Simplifying the
notation somewhat, we deal with the following sit-
uation. For some probability measure x on R*, or
rather on some metric space X with distance func-
tion p, we want to estimate the probability that
two randomly and independently chosen points are
within distance € —— this probability is the correla-
tion integral. This estimate must be based on a set
of N points, which we assume to be a random and
independent sample for the probability distribution
p, and their mutual distances.

Estimation of quantities like these is treated in
the theory of U-statistics as introduced by Hoeff-
ding [1948]. We first present the results and then
give a sketch of the arguments involved.

An unbiased and minimal variance estimate for
the correlation integral, based on an independent
sample of N points z; as above, is given by the
following formula

- 2
P= m % g(:::,-, .’L‘j)
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where g is the function which is one if the distance
between z; and z; is smaller than ¢ and zero oth-
erwise. This is of course the same as Pyx(c) as
defined in Sec. 3.

The variance of P, as a function of the size N
of the sample is (4/N)var(g1) + O(N~2), where g
is the function which assigns to each £ € X the
p-measure of the e-ball around z — var(g)) de-
notes the variance of the function g1 with respect
to the measure . Note that with N points we have
N(N -1)/2 distances. So if these distances could be
considered as independent, the variance of P should
be of the order of N72,

We recall here that we assumed that the points
z; formed a random and independent choice with
respect to the probability distribution u, and this
assumption is usually not justified in our context of
reconstructed data. At the end of this subsection,
we discuss how a justified estimate for this variance
can be obtained.

We deduce the above formula for the variance of
our estimator P. Let 8 be the average, with respect
to the measure u, of the function g; as introduced
above. Then the variance is the average of (P —6)?,
where the average is taken over all the N-tuples of
randomly and independently chosen samples from
. Writing & for taking averages, we have

: 2 2
E((P -0 = (?Tf(l\’_z—'i')") -E(Z 9(zi, z5) — 9)

i<j

(v=s)
e ) £ 3
NN -1) i<i k<l AFRAIAIAT

+

iciick,j#k

+ X

i< k<iigk

+3 (glzi, z5) ~ 9)2}~

i<j

Since # is the average value of g(zi, z;) for
i # j, the first summand is zero. In the second
to the fifth summand, there is always one re-
peating index. Now for fixed z; the average
(over z; end zx) of (g(zi, 25) — 8)(g(my, zx) — 6)

(9(=i, =5) — 0){g(zx, 21) ~ 6)

(g(2i, z;) — OMglzi, z) = O) + >, (9(=i, 5) — 6)(g(zk, =4) — 6)

1< k<]

(9(zi, z5) — O)(g(zx, 21) = O) + 3 (9lzi, z5) — O)lg(zs, zx) — 6)

1<hi<k

—
is (g1(x;) — 6)?. Teking the average over ; in the
last expression we get var(g1). The same holds if
the positions of the repeating indices are different.
So all the terms in the second to fifth summand
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are on average equal to var(g;). Rewriting these
summands as '

>, (a(=i, z5) - 6)(g(z:, k) — 6)
itk

we sec that there are N(N — 1)(N — 2) terms.
This gives & contribution to the total average
which equals

AN(N —1)(N — 2)
(N - 1))?

(var(g1))

= %va.r(gl) +O(N™Y),

Finally, the last summand has N(N — 1)/2 terms
and hence only gives a contribution of the order
O(N~?). This completes the proof. .

Now we come back to the problem that the
points z; may be dependent. This happens in par-
ticular if we consider reconstruction vectors of a
time series which is obtained by oversampling a con-
tinuous time signal. Estimation of the variance in
this situation was considered in Denker & Keller
(1986}, but the method described there is very time
consuming and it is still only valid asymptotically
for large values of N. In the present context there is
& way out, making use of the Monte Carlo method,
as noted in Theiler et al. [1991] i.e., computing the
values of P for a number of different segments of
length NV of the same type series. This assumes
that we can continue the time series as far as we
want. For experimental time series, and in partic-
ular for economic time series this is not realistic,
but for numerically generated time series this is not
a problem.

It turns out that for the last two tests consid-
ered in Sec. 5, we compare with numerically gener-
ated time series for which the Monte Carlo method
can be used. In fact in the two cases one has to
proceed slightly differently. When we apply ran-
dom phase shifts on the Fourier coefficients, we get
& time series of the same length. We can however re-
peat this several times. When we use a linear model
with the “noise” taken from the set of residues, we
can easily continue the time series as far as we want.
We discuss an example of such an analysis in Sec. 6.

A.2. Optimal linear predictors

In this subsection we show how autocorrelation co-
efficients and optimal linear predictors are related.
We assume we have a time series {y;}i>0, which we

assume to be stationary, From this time series we
construct a Hilbert space H. The elements of this
Hilbert space are equivalence classes of time series
{#i}s>x for some k. Sums (or differences) of such
time series are obtained by adding (or subtracting)
values with the same index i; two time series are
equivalent if their difference has variance zero. We
want to define the inner product of {#} and {§} as
lim; 00 ™! ;¢ ;. A problem is that this limit
may not exist. This can be solved in the following
way: We start with our original time series Y = {y;}
which we assume is stationary. We then construct
from this the time series 07(Y’), where o is the shift
operator — the ith element of o(Y} is y;41. Inner
products of these time series exist because of the
stationarity of Y, they are just the autocovariances
of Y. Then we define M as the completion of the
finite sums of scalar multiples of these ¢7(Y)'s.

From now on we assume that the average of the
time series Y is zero and that its variance is one. We
denote 67(Y) by ¥;. Observe that the shift operator
o determines an isometry in X mapping Y; to Y41,
All the Y are unit vectors and the inner products
between them are the autocorrelation coefficients:
(Yi, ¥;) = pj;—j), so the whole geometry of the con-
figuration of vectors Yp up to Y_j is determined by
the autocorrelation coefficients p; up to px.

In this context the optimal linear predictor of
order k,

Un =@1¥Yn—1+ " + GkYn_sk

can be considered as an element ¥ of H , Which is a
linear combination of Y_; to Y., with coefficients
ay to ay, and which is optimal in the sense that ||¥ -
Yy||? is minimal. This means that we have to take
Y equal to the projection of ¥ on the linear space
spanned by the vectors Y_; to Y_;. The variance
of this linear predictor is the square of the distance
of ¥y to this linear subspace.

‘We now derive explicit formulas for the coeffi-
cients of the optimal linear predictor and its vari-
ance in terms of the autocorrelation coefficients.

2
¥ - Yo* =

Yo - Z (/1) 4
=1-2 Z aip; -+ Z 2ia;ipi—j| -
i ij

In order to find the optimal values of ay, ..., ax, we
differentiate with respect to a; and put the resulting



expression equal to zero:

—2p; + 2 E ajpli-j =0or p= Aa,
]

where A is the matrix with i, jth element py;.
and where a and p are the vectors with components
aj, Pir respectively. Using this notation we find by
gubstitution the variance

¥ - Y|l = 1 - pTA™ 0.

This assumes that A is invertible, but this is au-
tomatically the case if Yp,..., Y_; are not linearly
dependent, and that is what we shall assume —
see below.

From the above considerations it is clear that
the variance of the optimal linear predictor of or-
der k, defined by Y is zero if and only if Y =Yy is
linearly dependent on the vectors ¥_; to Y_;. But
in that case, since the shift operator defines a lin-
ear map in ‘H, Y) also is linearly dependent on Yo

to Y_g4+1 and hence linearly dependent on Y_ to

Y_;. Hence all the vectors Y; are linearly depen-
dent on Y.; to Y., the Hilbert space X is only
finite dimensional and all the prediction problems
are trivial. In what follows we assume this does
not happen, so we assume that all the vectors Y;
are linearly independent. In fact in the case where
we have linear dependence, the optimal predictors
are not unique: the vector Y is still unique, but
the coefficient a; to ax which express Y as a linear
combination of Y_1 to Y_, are not unique.

Finally we observe that one can show that from
an optimal linear predictor of order k and its vari-
ance, one can deduce the autocovariance coefficients
Ro,..., Rx. In fact these are the autocovariance
coefficients of a time series produced by the linear
model, defined by the optimal linear predictor.

A.3. Chaos, predictability and
autocorrelation

We mentioned in Sec. 4 that there are time se-
ries, even stationary ones,which are chaotic, in our
sense, but for which the optimal linear predictors
are asymptotically perfect. A very simple example
is the time series {yn} with y» = 0 except for the
case where n is 2™ for some integer m, in which case
¥n = 1. Here the optimal linear predictor is fn =0
and the variance of the errors is zero (the density
of the values of n for which y, = 1 is zero). In
this example the Hilbert space H = {0}. A similar
example with 7 nontrivial and with nonzero vari-

Detecting Nonlinearities in Stationary Time Series 255

~>—"

AN

Fig. 5. Saddle with homoclinic loop.

ance, Rg is obtained by adding a periodic signal,
e.g., by adding sin{r) to y, — this gives a time
series which is chaotic according to our definition
but for which the autocorrelation coefficients py do
not converge to zero for k — co. These examples
may look very artificial, but there are rather sim-
ple dynamical systems, described by ordinary dif-
ferential equations, which produce time series of the
aame nature. We describe such a system. This is an
example with continuous time (since we use a dif-
ferential equation); this is because the phenomenon
is, to our knowledge, much more unusual in the case
of deterministic systems with discrete time.

On the plane R?, we consider a differential
equation with a saddle point which has a homo-
clinic loop as in Fig. 5. We assume that at the
saddle point the contracting eigenvalue is dominat-
ing (so that in the neighborhood of the saddle the
divergence is negative). The homoclinic loop is at-
tracting from one side. If we follow an orbit which
is attracted to the homoclinic loop then we observe
the following. The orbit spends most of its time in
a small neighborhood of the saddle point and from
time to time goes around the homoclinic loop. The
successive times the orbits spend near the saddle
grow exponentially. So here also, if we have to pre-
dict the position of the orbit, we always predict it to
be in the saddle. Since the excursions along the ho-
moclinic loop become rarer and rarer, the variance
of the prediction error is zero.

This example is of course exceptional in the
sense that a homoclinic loop is nongeneric, but
gtill the example occurs in generic one param-
eter families.

The deterministic siructure
in the residues

We show, in a numerical example, how the deter-
ministic structure becomes less recognizable in the

A.4.
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Fig. 8. Two-dimensional reconstructions of the Hénon map (a) and of its residuals (b).

residues. For this we take a time series of the Hénon
map and the time series obtained by taking the
residues from an optimal predictor of order 5. Be-
low we show the two-dimensional reconstructions
of these time series. It is clear that in the second

case it is much harder to detect the fine-structure
due to the deterministic origin from the correlation
integrals P(e) for values of £ which are not very
small. Similar pictures can be found in Theiler
et al. {1991].



