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Abstract

To understand why two interacting oscillators synchronize with each other, or lock together and resonate
at some rational frequency ratio, dynamical-systems theory shows that one should study circle maps and their
periodic orbits. One can easily explore the structure of these periodic orbits using Newton maps, derived from
Newton’s method for finding the roots of an equation. I present here some interesting and beautiful examples
of fractals encountered in Newton maps while investigating the periodic orbits of circle maps.

1 Introduction

In 1665, Christiaan Huygens made a serendipitous
discovery. Working on a military project to develop
better time-keeping at sea, he had two pendulum
clocks in his laboratory — very expensive pieces of
hardware destined for Dutch warships — hanging
from a pole slung across the backs of two chairs. He
noted [1] that over a period of half an hour or so, the
two pendulums tended to lock into step with each
other.

He called his discovery the sympathy of clocks.
Today, it is known as locking, resonance, or synchro-
nization in oscillators, and is an enormously impor-
tant part of dynamical-systems theory that has ap-
plications to physics, chemistry, biology, engineering,
in fact to any place where there is something that os-
cillates. The theory of dynamical systems allows one
to investigate synchronization by showing that the
behaviour of complex oscillating systems like pen-
dulum clocks is described by simple equations called
circle maps.

The sine circle map

�m+1 = �m +
�
k

2�
sin 2��m mod 1 (1)

is a one-dimensional discrete mapping that describes
how an oscillator of natural frequency 
 behaves
when coupled to another of frequency one by a cou-
pling of strength k. When k = 0 the oscillator runs
uncoupled at frequency 
, but when k > 0 it can lock
into a periodic orbit: a resonance with some rational
ratio p=q to the driving frequency. To measure the
average rotation per iteration of the map — the fre-
quency of the oscillator — it is useful to define the

rotation number [2]

�(�) = lim
m!1

�m � �0
2�m

: (2)

Keeping k constant, we can iterate the circle map
for values of 
 between 0 and 1, and plot rotation
number � against 
. Luckily, it is not necessary to
iterate to infinity; the first few iterations can be dis-
carded to remove transient effects, and a few hun-
dred iterations are then sufficient to give an accu-
rate value for �. This plot has been termed the devil’s
staircase; the stairs are lockings: periodic orbits with
different rational rotation numbers that show up as
flat steps as in Fig. 1. When k < 1 the map is called
subcritical, and intervals on which the rotation num-
ber is constant and rational, where there is a peri-
odic orbit of a particular period, punctuate intervals
of increasing rotation number, whereas in supercrit-
ical circle maps (k > 1) the periodic orbits overlap.
But in a critical circle map at k = 1, the staircase is
complete; at every value of 
 there is a periodic or-
bit, and the rotation number increases in a staircase
fashion with steps at each rational rotation number
and risers in between. The staircase has an infinity
of steps at all scales so that someone climbing the
staircase step by step would never reach the top—
a devilish construction indeed! The devil’s staircase
becomes the devil’s quarry illustrated in Fig. 1 when
we look at the picture in terms of the nonlinearity k
as well as the forcing frequency 
, so that we have
rotation number � represented by height in a three-
dimensional quarry. The size of the step decreases as
the period of the associated cycle increases. Between
any two steps p=q and p0=q0 associated with rational
rotation numbers, the largest intermediate step is
given by the rational number having the smallest de-
nominator in that interval. This ordering of periodic
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Figure 1: The devil’s quarry in the sine circle map for 0 < 
 < 1 and 0 < k < 2. The periodic orbits, the steps in
the quarry, are sized according to the Farey rule (3). The devil’s staircase is a section front to back (k constant)
through the quarry. The steps are often called Arnold tongues after the mathematician V. I. Arnold.

orbits is provided by the Farey tree [3, 4, 5, 6] con-
structed using the Farey mediant

p

q
�

p0

q0
=

p+ p0

q + q0
: (3)

To obtain the Farey tree with this rule we start with
the two ends of the unit interval written as 0=1 and
1=1, to produce the ordering at the first level 1=2, at

the second level 1=3 and 2=3, at the third level 1=4,
2=5, 3=5, and 3=4, and so on. We can see this ordering
of periodic orbits reflected in the sizes of the steps in
Fig. 1.

There are many other fascinating phenomena in
the circle map, for example, chaos is found in the
supercritical circle map as iterates wander between
the overlapping resonances; this is seen in the devil’s
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Figure 2: (a) Two trajectories in the Newton map �m+1 = �m + 1=(2�) cot 2��m mod 1, that is (14) with c = 1,
showing sensitive dependence on initial conditions. The trajectory started at 0.063 ends up in one basin of
attraction; that starting at 0.064 finishes in the other basin. (b) Fractal structure in the basins of attraction
of the two fixed points.

quarry of Fig. 1 as the jagged rock face for k > 1 [7].
Here, though, I shall concentrate on the periodic or-
bits.

2 Newton Maps

To study the Farey ordering of the periodic orbits we
have to be able to locate with great precision where
they begin and end. To do this we can use the method
Newton invented for finding the roots (zeroes) of a
function g(x)

xm+1 = xm � (J�1(xm))g(xm); (4)

where J is the Jacobian matrix of g(x). We want to
find periodic orbits p=q of the sine circle map

f(�) = � +
�
k

2�
sin 2�� mod 1; (5)

where f q(�) = �. We wish to locate the boundary
points of these periodic orbits where

@fq(�)

@�
= c = 1: (6)

If we wanted to look at other aspects of the periodic
orbits, we could also find the superstable points for
c = 0, or the period doubling points at which c = �1,
so we will do the analysis for general c. Using New-
ton’s method we wish to have

fq(�) � � � p = 0;
@fq(�)

@�
� c = 0: (7)

We let

g =

�
fq(�) � � � p;

@fq(�)

@�
� c

�
; (8)

and use Newton’s method to find the roots of g.
The Newton maps that are produced quickly be-

come mathematically complex as the period of the

orbit increases. To give a simple example I shall look
first at the period-one (i.e., q = 1) or fixed points in
the circle map, at which 
�k=(2�) sin 2�� = 0 mod 1.
In this case we have

g =

�

�

k

2�
sin 2�� � p; 1� k cos 2�� � c

�
: (9)

We can locate the period-one orbits either along
lines of fixed k, varying 
, or along lines of fixed 
,
varying k. I shall analyse the Newton maps produced
by each of the two cases in turn.

3 The Period-One [�;
] Newton
Map

Let us look at the Newton map of period-one (fixed)
points in the sine circle map using � and 
 as vari-
ables (x = [�;
]). The Jacobian is

J =

�
�k cos 2�� 1
2�k sin 2�� 0

�
; (10)

which from (4) gives us the Newton map

�m+1 = �m +
1

2�

�
cot 2��m +

c� 1

k
cosec 2��m

�
;


m+1 = p+
k

2�

�
cosec 2��m +

c� 1

k
cot 2��m

�
: (11)

Despite appearances, this is a one-dimensional map,
since �m+1 and 
m+1 depend only on �m, and not on

m.

The fixed points [�fp;
fp] of the Newton map are
at �

n+
�1
2�

; p+
1

2�

p
k2 � (1� c)2

�
; n 2 Z; (12)

and�
n+

�2
2�

; p�
1

2�

p
k2 � (1� c)2

�
; n 2 Z; (13)
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Figure 3: (a) Cycloids produced by iterating once three lines of constant k in the map. That for k < kmax gives
a curtate cycloid, like a point within the circumference of a rolling wheel; that for k = kmax gives an ordinary
cycloid, as a point on the circumference of the wheel; and for k > kmax there is a prolate cycloid, like a point
outside the rolling circumference — a flange on a train wheel, for instance. (b) The map (16) with parameters

 = 0:5, p = 0, c = 1. The ordinate is 0 < � < 1, and the abscissa �5 < k < 5. The basins of attraction of the
fixed points [�fp; kfp] at [1=4; �] and [3=4;��] are depicted in shades of crimson and turquoise; the darker tones
represent more rapid approach to the fixed points.

where �1 and �2 are the two values of arccos((1�c)=k)
in the range [0; 2�). Of course if jkj < j1�cj then there
are no fixed points.

If, as is often the case, we are interested only
in finding 
 values, whatever the value of �, we
may lump together all the fixed points with 
fp =

p+1=(2�)
p
k2 � (1� c)2 and all the others with 
fp =

p�1=(2�)
p
k2 � (1� c)2. In this way we are left with

only two fixed points. This procedure is equivalent to
putting the map on the unit circle, that is looking at
the fixed points of the map

�m+1 = �m+
1

2�

�
cot 2��m +

c� 1

k
cosec 2��m

�
mod 1:

(14)
By virtue of its infinitely many branches, illustrated
in Fig. 2(a), this map has the fractal structure shown
in Fig. 2(b) of the boundaries of the basins of attrac-
tion of the fixed points. At the edges of the large
contiguous regions around the two fixed points, com-
puter investigation reveals structure at finer and
finer scales.

4 The Period-One [�; k] Newton
Map

Now let us look at the Newton map produced by us-
ing � and k as variables (x = [�; k]). The Jacobian

is

J =

�
�k cos 2�� �1=(2�) sin 2��
2�k sin 2�� � cos 2��

�
; (15)

giving us the Newton map

�m+1 = �m + 1=(2�km)(2�(
� p) cos 2��m

+ (c� 1) sin 2��m);

km+1 = 2�(
� p) sin 2��m � (c� 1) cos 2��m: (16)

This map, in contrast to the previous one, is two-
dimensional, but since �m+1 = f(�m; km) and km+1 =
f(�m), a set of points with the same � will map to a
set with the same k. We can write the map as

�m+1 = �m +R=(2�km) sin(2��m + �);

km+1 = R cos(2��m + �); (17)

where
R =

p
(c� 1)2 + [2�(
� p)]2 (18)

and

� = arctan
2� (
� p)

c� 1
: (19)

Let us call the two values of this arctangent in the
range [0; 2�) �1 and �2. It is now easy to see that the
map is bounded in k with maximum jkm+1j = R =
jkmaxj.4



Figure 4: Basins of attraction for a Newton map finding the edges of the 1=2 tongue in a subcritical k = 1=2
sine circle map; the boundaries of the plot are �0:5 < � < 1:5 for the ordinate, and �1 < 
 < 2:0 for the
abscissa. Red and blue represent the basins of the two fixed points that arise from finding the two edges of
the tongues. The deeper the colour, the faster is the approach to the basin from that point. The yellow points
are where the trajectory failed to fall into either basin within twenty iterations.

It is interesting to note that if we set � = 2��m+�,
x = 2��m+1 + �, y = 1 � km+1=km and b = R=km we
obtain

x = �+ b sin�;

y = 1 + b cos�; (20)

which are the parametric equations for a cycloid, the
curve traced out by a point on a wheel being rolled
along a flat surface. A curtate cycloid is obtained
when jbj < 1, an ordinary cycloid has jbj = 1 and
a prolate cycloid is given when jbj > 1. We have
b = R=km, so lines of constant km in the map iter-
ate to different cycloids with jkmj = R = kmax being
the changeover point; see Fig. 3(a).

The map has fixed points [�fp; kfp] at

[n� �1=(2�); R] ; [n� �2=(2�);�R] ; n 2 Z: (21)

Note that points with any k except the singular value
k = 0 with the same �-value as a fixed point map
straight into it. That is

[�fp + n=2; k]; k 6= 0; n 2 Z; (22)

iterates to [�fp; kfp]. Thus there exists an infinity of
preimages of each fixed point. The map also has a
singular line at k = 0. By the same reasoning as
above, there exists an infinity of preimages of points
on the singular line.

[�fp + n=2 + 1=4; k] ; k 6= 0; n 2 Z; (23)

iterates to [�; 0], somewhere on the singular line and

[�fp + n=2 + 1=4;�R=((n+ 1=2)�)] ; n 2 Z (24)

iterates to [�fp; 0], on the singular line below a fixed
point. All this interesting behaviour may be observed
in Fig. 3(b), showing the basins of attraction of the
fixed points.

5 Periods Two and Higher

The mappings are no longer one-dimensional, and
their structures are even more complex than those
described above. In the (�;
) Newton map for peri-
ods two and higher there are two fixed points, cor-
responding to the two sides of the Arnold tongues in
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Fig. 1, and colouring their basins of attraction dif-
ferently in an image, together with a third colour for
points that do not converge to either solution in a cer-
tain number of iterations, shows the complexity that
exists, as I illustrate in Fig. 4. This image from my
doctoral thesis [8], was used for the cover of Volume
5 of the journal Nonlinearity.

6 Further Ideas

I have shown some of the beautiful dynamical struc-
tures that can be found in Newton maps of the circle
map. The idea can be carried further by iterating the
process: one can make Newton maps of Newton maps
of the circle map, Newton maps of Newton maps of
: : :, and so on recursively. But that story will have to
wait for another time.
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