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Abstract The theorems that are presented in this paper, are

a contribution te the foundatiens of the averaging method for
ordinary differential equations. They involve the study of
the persistent features of vector fields, under non autono-
mous perturbations of mean value zero. The problem of obtain
ing qualitative information from the study of the averaged
equation is considered and theorems that give new conditions
to guarantee the uniform validity of the approximation over
the time interval [0,»), are proved. A general result on the
persistence of attractors is presented. The analysis uses in
a fundamental way, a generalization of the notion of a solu-
tion stable under persistent disturbances. The proofs do not
require special behavior of the linearized system and the re-
sults obtained are not only local, but give relevant informa-
tion about the persistence of domains of attraction.
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1. THE AVERAGING METHCD

Let us consider a differential equation of the form
(1) x = f(t/e,x,€)

where the function f(t,x,¢£) is almost periodic in t, uniformly
with respect to (x,€) in compact sets and € 1is a small positi-
ve parameter. Along with this equation we consider the following

ion:
equation T

(2) %= f (%) = lim (1/T}] f(t,%,0)dc.
o T J

0

This equations is obtained from (1) by averaging its right hand si
de with respect to the variable t and is called the averaged
equation. The averaging method consists of approximating the solu

tions of the equation (1) by the solutions of the equation (2).
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192 H. C. CALVET

The intuition behind this approximation is that, for ¢
small, the equation (1) corresponds to a t-dependent vector field
that undergoes very rapid oscillations as t changes; it is then
natural to expect that in the first approximation the solutioms of
(1) will only obey the average effect of the vector field f(t,x,0).
In the case where f(t,x,e) is periodic in t, the validity of
this reasoning is easily justified by the fact that the difference
between the integral of a periodic function and its mean value
tends to zero as the period tends to zero.

Using a different time scale (T = t/¢) in the equation (1),

one obtains the equation
(£ % = ef(t,x,€),

where the new time T have been renamed t again. Doing the sa-

me with the equation (2) the averaged equation takes the form:
(AE) X = ef (%).

The study of equations in the form (E) was initiated by N.N.
Bogolyubov [ 1] and were called by him equations in Afandard foam.
In spite of the inconvenience of working with an e~dependent aver
aged equation, it has become a tradition in the literature to for-
mulate and discuss the results on the foundations of the averaging
method for equations in this form. Following this custom we will
work in this paper with equations in standard form, assuming that
in the equation (E) the function f: 1R x " x (0,=) = " is con-
tinuous, has continucus partial derivate with respect to x and
is almost periodic in t, wuniformly with respect to (x,c) in
compact sets. Here TR is the set of real numbers and T the set
of complex numbers.

A  fundamental result of the averaging theory is the Bogolyu-
bov-Hale decomposition theokem [2]. It says that after a change

of variables, the equation (E) is just a perturbation of the aver-
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aged equation. In view of this theorem the averaging procedure
can be treated in many respects as a classical regular perturbation

problem.

Theorem 1.
Given any compact set Q C L" there is an e, >0 and a function
u(t,y,€)  Ccontimuous on R x I° x (0,2, such that:
i} ult,y,e) 448 almost perdedic in t undfoamly with re-
spect 10y £n compact sets for each fived e
ii) u(t,y,e) has a continuous dewlvative with hespect fo t
and denivatives ¢f any arbitrany specijded oaden with ae-
spect to y;
ii1) eult,y,e), and gg—; (t,y,e) tend te zeno as €~ 0 uni
formly with nespect to t €R and y 4n compact sets;
iv) The change o4 variables

y + eu(t,y,g) fon (t,v,e) €R x O x (0,¢,)
(3) X =
y gon (t,y,e) €R x & x {0}

mmgom equation (E) Lnto
y = ef () + eglr,y,€)

This functicn, glt,y,e), L5 continucus, has continucus derdlvatd-
ve with nespect fo y on R x 0 x [0,e) and approaches zere as
£ > 0 wdlpormby with respect to ¢ €ER and vy 4n compact sets.

2, VALIDITY OF THE AVERAGING METHOD OVER COMPACT INTERVALS OF TIME

We recall here a theorem that implies that, for all solutions, the
averaging approximation as ¢ * 0, 1is uniformly valid during fi-
nite intervals of time. It is an immediate consequence of the de-
composition theorem and the continuity of solutions with respect

to initial conditions and parameters [ 3].
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Theorem 2.

Let ¢€(t) be a solution of the equation (AE), defdined for all
t = 0. Given a toferance n >0 and T as Large as we please,
there are positive numbers € (n,T) and &(n,T) such that:

0<e < €, and

Ixo - ¢€(0)| < §
inplies that

|xE(t,0,x0) - ¢E(t)] <n fon all te€E([0,T/e].
Here x (r,0,x,) 44 the sofution of the equation (E) <that a Lti-
me t =0 Zzakes the vafue x

o

This theorem is a more general versifn of the so called: Bogo
Lyubou's thechem on the validity o4 the averaging method over Large
intenvals of time [1]. It is more general because it is not re-
stricted to compare solutions that start with the same initial con

ditions but neighboring initial conditions are allowed.

3. VALIDITY OF THE AVERAGING METHOD OVER UNBOUNDED TIMFE INTERVALS

Theorem 2 justifies the application of the averaging procedure, for
any arbitrary solution and during intervals of time as long as we
want, by taking € small enough. In spite of this the approxima
tion can break down in the long run regardless on how small we
choose the value of € to be [3]. This is a serious probiem from
the point of view of comparing the asymptotic behavior of the so-
lutions of the equation (E), with that of its averaged equation.

Tne problem of finding conditions under which the approxima-
tion is valid over infinite intervals of time has been studied by
several authors [4],[5i,[6]1,[71. It has been found that it is val
id to make this approximation for solutions that have strong stabi
lity properties.

In this paper we will be interested in the following problem:




AVERAGING AND ATTRACTORS 195

Suppose that it is known that the set A is an attractor for the
averaged equation, with certain domain of attraction D(A); What
can be said about the qualitative behavior of the solutions of the
original equation? 1Is there a set that is attracting them? What
is the domain of attraction of this set? In Section 5 we will pre—
sent and prove some results on this problem. These are general re
sults that give new conditions under which the averaging approxima-
tion provides meaningful information and contain, as particular
cases, the results that the authers mentioned above have obtained

for strongly stable solutions.

4. ATTRACTORS

: + .
In vhat follows we will let R denote the set of all non negative
. . n
real numbers. The distance between a point x € L and a set

¥ € g% will be denoted by
d(x,Y) = inf{|x - y| [y € ¥},

+
Let us consider A CR x ° such that for all t 0, the

set
A(r) = {x e g% | (t,x) € A},

is bounded. We will say that the set A is an atitractor for the

differential equation
(6) x = f£(t,x),

if it is a uniformly asymptorically stable set for it, that is:
(i) Given n > 0 there is a number & > 0 such that, for all
t »0,
[}

d(xo,A(to)) <3

implies that
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d(x(t,t ,x ),A(t}) <n for all t=r¢t ,
o [o] Q

where x(t,to,xo) denotes the solution of the equation (6)
that satisfies the initial condition x(t,to,xo) = x,.
(ii) There exists a positive number h such that, for any given

n>90 there is T such that, for any t, * 0,
<
d(xo,A(tO)) “h
implies that
dix(t, e ,x ),A()) <n for t= t, * T
A solution ¢ of the equation (6) with positive semiorbit,
+ n .
¥ ={xea’ | x = ¢(t) with t = 0},

is called unifoamby onbitally asympiotically stable {4 the set
R x Y+ is an attractor. It is called wundifoumly asymptotically
stabfe when its graph for t & 0 1is an attractor.

The doma<in ¢4 attnaction of an attractor A is the set

DIA) = {(t %) R x € | dlx(t,t ,x ),A(t) = 0
as t > 00}_

For every attractor this set is an open subset of Ef x g%, If
the equation is autonomous, X = f(x), there is a set D C "
such that UD{A]) =R x D. The proof of this last assertion is
trivial when the attracter is of the form ‘mf x A with A a sub-
set of En; for the general case, however, it requires a more
elaborate argument [ 11].

The appendix contains other basic facts and remarks, about at

tractors and asymptotic stability of sets.

5. PERSISTENCE OF ATTRACTORS
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Let A be an attractor of the averaged equation X = fo(i), with

domain of attraction DA} = Hﬁ-x D. Let xe(t,to,xo) be the gen
eral sclution of the equation (E). We say that A attracts solu-
tlons of the equation (E) Ln the £imit € - 0, if the set

A= {0 € x 0" | (er,0) € A)

satisfies:
(1) Given 1N > 0 there are positive numbers Eo(n) and S(m,
such that!
+
(S
(to,e) R x (0,(»:0] and d(xo'Ae(to)) <8
implies that
dix_{t,t ,x ),A () <n for t €[t ,=};

(ii) Given any X, €D and n > 0, there is a positive number
so(xo,n) and a function T:(D,eo) +%' such that for
0<e<e,

]

d(xE(t,O,xo),AE(t)) <n for t €[T(e),).
We now state and prove the main result of this paper.

Theorem 3.
Eveny attracton of the averaged equation X = fo(i) atthacts
sofutions of the equation (E) in the £Limit e = 0.

(A) The notion of a solution stable under persistent disturbances
(totally stable) can be generalized for more general sets in the
following way:

Consider the equation

7) x = f{t,x).

AA—B
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Aset MCR' x € will be called stable under persistent distun-
bances for the equation (7) if, for any given n > 0, there are
pesitive numbers él(n) and Gz(n), such that for any function g,

the solutions of the equation

(8) v = g(t,y)

have the property that, for any to > 0, d(yo,M(to)) < 61 and
[f(t,y) - g(t,»] < 6,, for all (t,y) such that t> t, and
d(y,M{t)) < n, implies that

diy(t,t ¥y )),M(t)) <n for t2t .

Here y(t,to,yo) is a solution of the equation (8).
The proof of Malkin's theorem that Yoshizawa gives in refer-

ence [ 8] can be easily adapted to prove the following result.

Lemma

Every attractor £Ls stable unden persistent disturbances,

(B) Notice that AE is an attractor for the equation (AE) with do-
main of attraction equal to the domain of atrtraction of the attrac
tor A. Let us denote by xe(t'to'xo) the general solution of the
equation (E). We will prove first that:

Given 1 > 0 there are Eo(n) >0 and &§ > 0 such that!
(t,e) €R" xR x (0,¢)) and dix,,A (1)) <6, implies that

d(xe(t.to),Ae(t)) <n for t=> £,

To do this, let £ be equal to the closure of the set of x € ,
such that there is (t,y) € A satisfying d{x,y) < 1. We apply
the Theorem 1 to guarantee that there are € and a function
uf{t,x,e) such that the change of variables x = y + eu(t,y,€),

with 0<e < €,» transforms the equation (E) into

%) y = €f_(y) + £F(,y,€)
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Rescaling time (T = £t) we obtain
(z) dz/dt = fo(z) + F(t/e,z,€).

Let Ye and z, denote the solutions of the equations (Y) and
(), respectively, Assuming that a value n <1 is given, we
choose n, te be a positive number smaller than n. By Malkin's
lemma, the attractor A is stable under persistent disturbances
for the equation =z' = fo(z). Let us consider Gl(no), 62(n0) sat
isfying the definition of stability under persistent disturbances
and €

2
hood of A of radius n and € in (0,&2). From the unigqueness

such that |F(t,z,E)| < €, for (t,z) in the neighbor-

of the solutions with respect to initial conditions we have that
= . i <

ye(t.to,yo) zE(Et,Eto,yo) Therefore, if 0<¢ £y and

d(yo'Ae(to)) < 61, then

(9 dly (et .y ).A(6)) = diz (ct,et,y.)A (1)) < n,

for t>t .
[

. Choose 6§ < 61 and let r and £y be such that:

(a) RCB_=1{xet" |x] <rh
r

. 3 1
() leu(t,x.e)| <min {n.- n, &~ 6} and Iea—: (t.x,0)| <5

for (t,x,e) € Br+6 X (O,EO).

Choose € = min{el,ez,EB,l} a:d consider the map Gt,e(Y) =
X, - eu(t,y,c), where (to,t,e) ER xR x (0,80) and
<
d(xD,AE(to)) &, Let

X={xe®| d0A () <6, ).

For any y, y' € X this map satisfies:

d(G, () A (E)) S dlx -eulr,y,e),x )+d(x A (£ ))<E,-6+8=6
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and
1
LG(Y)—G(Y')l=€]u(t,y,€)-u(t,y',€)|=E!g(1)-g(0)|= €|Jgg'(s)ds|

o] 73 eyt sy o)) (ymy)ds] <Ely-y'|
a ax * 2 [

where g(s) = ul(t,y'+s(y-v'),€). This implies that Gt E:X - X
is a contraction. ’

Therefore, given (to,E) € Df+ X (0,50) and X such that
< i =
d(xo’Ae(to)) §, there is a y_ such that x =y, + Eu(t,yo,E)
and d(yo,AE(tD)) < 51. From (9) we have that

d(yc(t,to,yo),AE(t)) <n, for t2t.

Then by the uniqueness of the solutions with respect to ini-

tial conditions we have that
dx_(t,t ,x ),A_(£))=dly (t,r ,y )+ eu(e,y_(t,t,y),6),A (€))
Sd(y_(t,e,,5 ) A (D) + lealt,y (6, Ly ) |
< - = > .
no +n no n, for ¢t t0
(C) Assuming that Eﬁ x D is the domain of attraction of the at-

tractor A, and that % €D and n > 0 are given, we prove that

there are positive numbers €, and T such that, if 0<¢e < €y

then
d(xs(t,O,xo),AE(t)) <n for t = to + T/e.

Dencote by EE the solutions of the equatien (AE). According to
what was proved in part (B), we can choose § and € such that

d(Eo,Ae(to)) <4 and 0<e<g, implies that
d(xe(t,to.io).AE(t)) <n for t = t

Since x is in the domain of attraction of A, there iz T > 0
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such that

d(il(tpolxo)sA(t)) < 6/2 for t = T.
From this it follows that

d(ie(tlglxo)lAE(t)) < §/2 for t = T/c.

Let € be such that

2

|x€(t,0,x0)~§€(t,0,xo)[ < 8/2 for t€[0,T/e]l and 0 <& <e,.

Then if we let ¢ = min{el,azl, it follows that for 0 < ¢ < €y
< .
d{xg(T/e,O,xo),AE(T/E)) ixE(T/E,O,xo) xE(T/E,O,xO)l +
d(ie(T/E.O,xo) ,AE(TIS))
< &/2 + &/2 = 6.

Therefore d(xe(t’o’xo)'Ae(t)) <n for t# T/e. This concludes
the proof of Theorem 3.

The following theorem gives conditions under which the aver-
aging approximation is uniformly valid over the interval of time
[0,2). Part (a) focuses on the validity of the approximations for
solutions and part (b) on the validity of the approximations for
orbits. The problem of the validity in an orbital sense is very
important because interesting solutions, like the periodic solu-
tions, can be orbitally stable but can never be asymptotrically sta
ble.

Theorem 4.

let ¢ be a bounded solution, on 1R+, o4 the averaged equation

[AE),

(ay 14 ¢ 48 unipormly asymplotically stable, with domain of at-
traction R x D, then fon any x €D,
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|x€(t,0,xo) - ic(t,O,xo)] -0

as € = 0, undformly with respeet to ¢ 4in [0,@),
(b) T4 ¢ is unifonmly onbitally asymptotically stable, with do-
main 0§ attraction ®' x D, then fon any x, €D,

dlx_(£,0,x ), Y G _(£,0,x ) = 0

as €~ 0, uniformby with redpect 2o t 4n [0,%).
Here, x_ and X are sodutions of the equations (E) and (AF},
nespectively and Y+(Re(t,0,xo)) L4 the positive semionbit of the
solution J-(E(t,O,xo).

Proof.
From Theorem 2.(a) of the appendix, we have that the set

A= {(t,x) €1m+ X Enlx = il(t,O,xo)}

is an attractor for the equation % = fo(i). Then it follows from
Theorem 3 that A attracts solutions of the equation (E) in the
limit € =+ 0. Hence, given any n > 0 there is an Eo > 0 such

that, for any € in [0,E0),
[x (€,0,x ) ~ X (£,0,x )| = d(x_(£,0,x ),A_(£)) <n
for t € [0,®).

This proves part (a). Analogously, to prove part (b), we use

Theorem 2.(b) of the appendix to conclude that the set
AR xR (1,0,x)),

is an attractor for the equation % = fo(i). Then, Theorem 3 im-
plies that A attracts solutions of the equation (£) in the limit
€ + 0. From this we have that, given any n > 0, there is an £,

such that, for € in [0,€o).
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40 (6,0,3,0, ¥ G (£,0,x))) = dlx (£,0,x ), A (E)) <,

for t € (0,«).

6. EXAMPLES AND REMARKS

Theorem &4 applies in particular to the case of exponentially
asymptotically stable equilibrium solutions, which is a well known
result [ 7] . Notice that it also applies to any asymptotically sta
ble equilibrium (not necessarily exponentially attracting) and to
non static solutions like stable limit cycles (see appendix). For
the case of a limit cycle, since exponential attraction is not ne-
cessary, the result applies even when the periodic orbit has a non
trivial center manifold. Similarly, for the case of attracting
manifolds, Theorem 3 does not require them to be normally hyperbo-
lic.

Example

Let us consider, three coupled second order differential equations
of the kind that correspond to one degree of freedom mechanical

systems:

X + ul(t/c)(xz—l)* + ml(t/€)x = Fl(x,i,y.ﬁ,z.i.e)

+ Gl(t/E.X.*.Y,i',Z.é.E)

(10) § 4 1,y (/) (713 + u, (t/E)y = Fy(x,i0y,9,2,2,6)

+ Gy ltfe,x,%,7,¥,2,2,8)

Z + f(t/s,z,e)é3 + g{t/e,z,e) = Fg(x,i,y,i,z,é,e)

¥ Glt/e,x,%,y,9,2,%,6).

Twe of them are van der Pol equations and the third is a pendulum
like equation, with a nonlinear friction term. We assume that the
system is weakly coupled for small €. We also assume that there

is non autonomous coupling through terms that are highly oscillatory
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in t. For these terms we do not assume the amplitude vanishes in
the limit € = 0, but that they are oscillating with mean value ze
ro. Also, other rapidly oscillating terms and coefficients, appear.

Precisely we assume that: the functions f,g,Fi and Gi are
of class El; the functions £,z and Gi are almost periodic in
their first variable, uniformly with respect to the other variables
in compact sets; the functions Fi vanish when € = 0; the mean
value with respect to t of the functions f(t,z,0) and g(t,z,0)
are fo(z) and go(z), respectively; fo(z) is a positive func~
tion and go(z) satisfies zgo(z) >0, for z # 0; the functions
ui and wi are almost periodic with positive mean values ui and
Wy s respectively.

Rescaling time (T = t/e) and writing system (10) as a first
order system we obtain a system in standard form. Clearly, the co
rresponding averaged system,

dxlldT = ex,
dxy /4T = e (x3 = 1)x, - €hiyx,

dy,/d1 = ey

2 -
dyzldr = —euz(yl - l)y2 - Ew,y,

dzlldT = €z,

. 3_
dzZ/dT = Efo(zl)zz Ego(zl).

has an invariant 2-torus, which we will call, T. All peints of
mﬁ, except those laying on some subsets of measure zero, approach

T as t = o. These subsets correspond to other invariant sets or
the domain of attraction of them, for appropiate restrictions of
the flow. Note that these other invariant sets include equilibria
and periodic orbits but none of them are attractors for the full
averaged equation. Also, note that the nonlinear friction term in
the pendulum equation causes this torus not to be normally hyperbol

ic,
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Being asymptotically stable, it follows from Theorem 1 of the
appendix, that the set ]f+ x T 1is, according to our definition, an
attractor for the averaged system (11), Then, Theorem 3 can be ap
plied to conclude that the set Bi+ x T attracts solutions of the
first order system corresponding to system (10}, in the limit
€ * 0. Thus, we have that, for almost all initial conditions in
Rb, the long term evolution of this non autonomous first order 5yS

tem will be confined te a small neighborhood of the torus, T.

7. APPENDIX. Asymptotically stable sets and attractors.

The concept of attracting set that we are using here corresponds to
what is referred to in the literature as a uniformly asymptotica
lly stable set. There is another weaker noticn of attracting set
that has been widely used in the literature. According to this no
tion, a set A CR' x € is called an attractor for the differen-

tial equation
(12} x = £(t,x),

if it is an asymptotically stable set for it, that is:

(i) Given any cylinder around A, there is a neighborhood of A
that under the flow, in the space D(F X En, remains in the
prescribed cylinder., Here, by a cylinder of radius n around
the set A, we mean the set of all points (t,x) such that
ax,A(t)) <n.

(ii) There is a neigborhood of A such that the orbits through

points of it approach the set A, as t tends to infinity.

Clearly, the weakness of this concept of attracter is in its
lack of robustness (stability) with respect to perturbations of
the vector field. Sets that satisfy only the property (i} have
been also called attractors in the literature. Asymptotically sta
ble sets and attractors in this latter sense do not have the in-

teresting persistence properties that we have discussed before.
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Obviously, uniform asymptotic stability implies asymptotic
stability, and the converse is not true. There exist several tech
niques to prove that a set is asymptotically stable e.g.: eigen-
values analysis or Lyapounov's theory for general nonlinear sys-
tems. To verify uniform asymptotic stability is more difficult
in general, but in some cases it follows from asymptotic stability.
The following proposition [ 9] gives conditions under which this is

true.

Thecrem 1.

Assume that in the equation (12) Zhe function f satisfies
f(t4+T,x) = f(t,x) for el ¢ and x, Then, every asymploiica-
2y stable set A such that A(e+T) = A(t) 4or all t 2 0, 48
an atthacter.

Notice that this theorem implies that if ¢ is an orbitally
asymptotically stable periodic¢ solution of an autonomous equation
with orbit +v(¢), then the set mf x ¥{¢) 1is an attractor. It
also implies that the graphs of constant asymptotically stable solu
tions of autonomous equations are attractors. However, is not
true that for any solution, ¢, of an autonomous equation, to be
asymptotically stable, implies that the graph of ¢ 1is an attrac
tor [ 10].

The fact of A being an attractor does not imply that the so
lutions in its domain of attraction ought to be asymptotically sta
ble. Furthermore, the solutions in its domain of attraction
could even be orbitally unstable {11]. The next theorem is about
some particular cases of interest, inm which the attractor determi
nes some kind of attracting behavieor of the solutions on its do-
main of attraction.

Theorem 2,
Assume that A 44 an attractor fon the differential equation (12).

Then for any (e ,x ) € D(A):
(a) 1§ A s the graph for t = 0 af a solutdion, then the graph
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of the sofution x(t,t ,x ), fer t » 0, 45 an attracton.

() I§ A 44 of the form KT x YT(0), where YH(4) denotes the
positive semionbit of a sclution ¢ of the equation (12),
then the set B' x ¥ (x(t,t_,x )) 44 an attractor.
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