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PERTURBATION RESULTS ON THE LONG RUN BEHAVIOR OF NONLINEAR DYNAMICAL SYSTEMS
Humberto Carrillo Calvet*

ABSTRACT. The validity of the averaging approximations for ordinary
differential equations in standard form is discussed. New results
on the uniform validity over infinite intervals of time are presented.

1. INTRODUCTION. In this paper we will be concerned with differential equa-
tions of the form

{E) x = e F{t,x.e)

where ¢ dis a small positive parameter. The function f is going to be con-
sidered oscillatory with respect to the variable t 1in a very general sense
that includes periodicity as a particular case. Precisely, we will assume that
f: R = R « {0,2) + R" is continuous, has a continuous partial derijvative
with respect to x and is almost periodic in t, uniformly with respect to
(x,2)} in compact sets. Equations Tike (E) were first studied by N. Krylov

and N. N. Bogolyubov who called them differential equations in standard form.

There is a wide spectrum of dynamical systems models where such equations
appear. They are very important in Mechanics and in more general systems that
present nonlingar oscillation phenomena. For instance, the equation

(M x = f{x) + g{t/e)

with f: 9< R" =+ R" and ¢ a periodic vector valued function, models an
autonomous dynamical system being acted on by a rapidly oscillating external
forcing. Clearly the change of time scale T = t/e reduces equation (1) to

the standard form.
Also, a system of n weakly coupled havmonic osciltators

(2) Gk + wk uk = E fk(U1,--- ,Uk,fJ],...,L.lk}
k= T1,2,...50
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“can be written in the standard form., In fact, using the amplitude and phase
variables y = (y1,...,yn} and 0 = (68y,...,6 ) defined by

. . (8, tw, t)
Uy + i Wl F Y e

the system (2) can be transformed into
.E') = ¢ F{t,8,y)

.‘;’ = E G(tnasY)-
2. The Averaging Method, notably developed by Krylov, Bogolyubov and Mitro-
polsky [1], consists of approximating the solutions of the equation (E) by the
solution of the autonomous equation

(AE) X =g 'FO('JE)

vwhere fD(E) is the mean value of f(t,X,c) with respect to t at e = 0.
That is to say,

:
£4(%) = Iim%f £(t,X,0)dt.
Ta= 1 J0

Equation {AE) is called the avewged equation and it simplifies equation (E)
by at least reducing the dimension of the system by one.

To see that this is a reasonable procedure one rescales time (r = et) to
obtain the eguations

(E*) g§-= f{r/e,x,e)
(AE") K. ¢ 5.

Thus, we have that for small values of ¢, the equation (E') has a very rapidly
oscillating forcing term and we would expect that in the first approximation
the solution, xE(T), of (E} will only obey the average effect of the forcing.
For the case when the right hand side of equation (E)} is periodic with respect
to t, the validity of this reasoning is justified by the fact that, the dif-
ference between the integra] of a periodic function and its mean value tends to
zero as the period tends to zero.

3. The following decompesition theonrem {Hale [2]) is a fundamental result of
the averaging theory. It says that after a change of variables the equation (E)}
is just a perturbation of the averaged equation. In view of this rasult the
averazging procedure can be treated, in many respects, as a classical regular
perturbation method.
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THEQREM 1. Given any compact set o c R"  there is an eg > 0 and a
function u{t,y.c) continuous on R »R" x (0,e4] such that:

i) u(t,y,e) is almost periodic in t uniformly with respect to y
in compact sets for each fixed «;
ii) wu(t,y,c) has a continuous derivative with respect to t and de-
rivatives of any arbitrary specified order with respect to y;
iii) eu{t,y,e}, € %g-(t,y.e) tend to zerp as ¢ + 0 uniformly with
respect to t € R and y in_compact sets;
iv) The change of variables

(3) {.V + eU(t..Y-E) for (t,y'E} €ER xgx (0160]
x =

¥ for {(t,y,e}) € R x n x {0}

transforms equation (E) into

3

¥ = EfO(y] + eg(t,y.e)

This function, g{t,y,c), is continuous, has continuous derivative with respect
to y on R x Q= [O,ao) and approaches zero as & + 0 uniformly with re-
spect to t € R and x in compact sets.

For the case in which the right hand side of the equation (E) is periodic
in t, it is an easy exercise to prove that the transformation (3) with

t
(4) u(toy.e) = JO [(s.y,0) - £,(y))ds

produces the desired change in equation (E).

The case when f(t,x,c) 1is almost periodic {a.p) is not as simple because
then, the function u defined by the equation (4) is not necessarily a.p. with
respect to t. It happens that the integral of an a.p. function with mean value
zero is not always a.p. and in fact can be unbounded [3]. However, it can be
proved that there exists a function u{t,x,e} a.p. in t uniformly with re-
spect to » in compact sets such that

A (tay,e) + F{E,.0) - foly)

uniformly with respect to t € R and y in compact sets. Using this function
u in the transformation {3), the proof of Theorem 1 follows in essentially the
same way as in the periodic case.

4. In the following sections we will pay attention to the problem of the valid-
ity of the averaging method. This is the problem of justifying and giving con-
ditions under which we can obtain information about the solutions of the full
equation (E} by studying instead the averaged equation {AE). This guestion has
been approached in different ways; there is, for instance, a class of results
that guarantee the existence of almost periodic solutions of the full equation
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under the assumption that the averaged equation has a stable equilibrium that
satisfies a non-degeneracy condition. Here we will be interested in finding

conditions under which two solutions of equations (E) and (AE) with the same

initial condition approach each other as- ¢ tends to zero, uniformly in t.

We will be also interested in comparing solutions that start with nearby ini-
tial conditions.

Section 5 is devoted to the uniform validity of the approximations during
finite intervals of time and the sections 6 and 7 to the validity over infinite
intervals of the form [to,w). The results that will be presented in Section 7
are going to be particularly useful to conclude that the averaged equation re-
flects the qualitative behavior of the full system.

5. It follows from Theorem 1 that the equation (£') can be transformed into
(5) | &= £ y) + glrye)

with the function g continuous and g{t,y,c) =0 as e+ 0 uniformiy for

te€ R and x in compact sets. If ¢(r) is a solution of {AE') defined for
all positive v, then by the continuity of the solutions of equation (5) with
respect to changes in the initial conditions and the parameter ¢, we have that
for a given n, T > 0 there are positive numbers €g and & such that 0 < ¢
< g and |yD - ${0)} < & dimplies that the solution of (5), yE(c). with
initial condition yE{O) = ¥g» satisfies lys(r) - ¢{t}} «<n for any 1 € [0,T}
It can also be proved that because of the nature of the change of variables (3),
the same is true when ye(r) is a solution of (AE'). From this and taking in
account that between the system (E) and the system (E') the rescaling « = et
is involved, we obtain the following result.

THEOREM 2. For each positive value of ¢, let ¢£(t) be a solution of
the equation {AE). Assume that for some e > 0, ¢ is defined for all te
[0,<). Then, given a tolerance n >0 and T asubiq as we please, there are
positive numbers eD(n,T} and &{n,T) such that 'C < e < g, and [xE(O) -
¢.(0}] < ¢ implies that

|x_(t) - s {t)l <n forall te (0.7/¢].

Here x_ represents a solution of equation (E).
This is a more general version of the Bogolytbov's theorem (4] on the va-

lidity of the averaging approximations over the so called long intervals of
time. The further generality here is in the fact that we are not restricted to
compare solutions of the equations (E) and {AE) that start with the same inj-
tial conditions but neighboring initial conditions are allowed.
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6. The Theorem 2 justifies the application of the averaging procedure during
Intervals of time as long as we want by taking e small enough. Nevertheless
it has the following weakness: it could be that no matter how small we take the
vaiue of =, there is a moment after which the approximation fails. This situ-
ation would be problematic if we are interested in the long run behavior of a
dynamical system. Figure 1 illustrates this phenomenon.

x N e=.01 [e=005 |¢=0.033
E.

v ' = t
10 20 30

Figure 1. In the figure it is supposed that x = ¢ 1is a
solution of the averaged equation and the other
curves are sclutions of the exact equation far
different values of «=.
The system
X-l = g x.z
(€} .
X, = -E X4 + & sen et
shows us that even for solutions that are Lyapunov stable, the situation §)Tus-
trated in Figure 1 can actually happen. This is a 1inear system with resonant
forcing and has the orbit structure depicted in Figure 2(a). Averaging the
right hand side we are left with the equation

X * e %
{AE) : —
lz R X‘

and this has a phase portrait like the one of Figure 2(b}. Clearly, the peri-
odic solutions of (AE) can not appraximate the unbounded solutions of the equa-
tion {E} uniforly for t € [0,=).
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Orbits of (E) Orbits of (AE)

Figure 2



6 HUMBER IO CARRILLO CALVET

Once it has been established that the averaging approximation can break
down during the scale of time [to,w), it remains to find cut under what condi-
tions it is valid. It has been proved by Volosov [5].[6], Banfi [7] and Eckhaus
[8] that for solutions with strong stability properties the approximation is jus-
tified over the unbounded interval [to,w). . The results that will be presented
in the next section, extend and complement these previous results by treating,
in a different way, more general solutiofs and giving us global information.

7. Let be 4: R = {0,=) = R" and let us denote by x, 8 solution of equation
(E). We will say that ¢{t,c) has a stable neighborhood (s.n.} as ¢ + 0 for
the equation {E), if for any n > 0 there are positive numbers Eo(n) and ¢{n)
such that (t;.e) € [0,=) x (0,e,) and Ix () - ¢(to,e)| < § implies that
Ixa(t) - ¢{t,e)] «n for all t 11’.0.

Similarly if for each e >0,y is aset in K, we will say that v,
has an onbitalfy stable neighborhood (0.4.n.) 88 ¢ + 0 for the equation (E) if
for any n > 0 there are positive numbers eo(n) and &(n) such that (to,e)
€ [0,0) = {0,:0} and d{x_{t,),v} < & Implies that d{xe(t),yi <n for all
t> . Here d{x,y)} represents the distance between the point x and the set
Y-

THEOREM 3. (Ref. [9]). Let ¢ be a solution of x = f (x) and x (tit,,
xo} the solution of equation (E) that satisfies the initial condition xE{tu;to,
xo} = Xg.

(a) If ¢ 3is uniformly asymptotically stable and bounded then the solution of
the averaged equation, i;(t) = g{ct), has a 4.n. as e » 0 for equation (E).

o is a peint in the domain of attraction of ¢, then given n > 0,
there is eo(") > 0 such that for any 0 < e < e, there exists T(e) > 0 5such
that |x {titg.xg) - elet)] <n forall t>T.

(b) If ¢ is orbitall iformly a ot stable and bounded with orbit
v then ~ has an o.4.n. 35 ¢ - Q for the eguation (E). If X, is a point
in the domain of attraction of v, then given n > 0 there is eo(n) >0 such
that for any 0 < ¢ < e, there exists T(e) > 0 such that d(xe(t;to.xo),7)<n
for 311 t>T.

Remarks. {i) The hypothesis of (a) and (b) can be satisfied for solutions
that are not linearly stabie. Thus, the assertions of the theorem can be also
true for solutions that do not attract exponentially.

(ii) The assertion of (a) also holds when ¢ 1is an asymptotically stable static
solution (see appendix). The same happens for (b) when 4 1is an orbitally asymp-
totically stable periodic solution (stable Timit cycle).

1i1) The statement (a) is also true for any solution stable under persistent
disturbances and bounded. Furthermore, if we extend in a natural way the notion

Also, if x
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of stability when persistent disturbances for sets in R" then we can obtain
2 similar result to that of (b} for this more general situation [10].
EXAMPLE 1. The equation

b5
1]

= ey(cuszt -z)
= —ex(1-2z + xy)}

[N
il

(6)

= =gz + & Sen(t + xy)

e

has not (x.y.z) = (0,0,0}) as a solution. However, (0,0,0) 1is a solution
of the averaged system

;C = zy(% - ZJ

{7) y = -ex(1 -2z + xy)
.‘;. = -£f.
Since V = xZ + %—yz + 22 is a Lyapunov function for this system (there are

not invariant sets in the x and y axis other than the origin} we have that
{0,0,0) 1s asymptotically stable with some domain of attraction 2. Then by
Theorem 3, the origin has a stable neighborhood for equation (6}, and for small
£ a1l solutions of {6) that start on 2 will end up in a small neighborhood
of the origin.

EXAMPLE 2. The planar system

X ® -ey + zex senft(1 - /XZFy2)3
¥ = ex + ey(l - /X5¥2)2 + ¢ cos(t + x)

has, after averaging, the polar coordinates expression

(8)

y = ey(l - y)3
(9) .

8= e,
The unit circle is a stable 1imit cycle for this equation. Then by fheom
3(b) it has an o.s.n. for equation (8), We also conclude that for small &
all solutions of (8) except the origin will be eventually within a small
neighborhood of the unit circle.

APPENDIX. Let x(t;tu.xo) denote the sclution of the equation
(10) x = f{t,x)

that satisfies the initial condition x(to;to,xu) = Xg- A solution ¢ of (10)
is called unifounly stable if it is defined for t >0 and given any n » 0
there is $§{n) such that for any t, 20, |x, - ¢(to)] < & fimplies that
Ix(titguxg) - a(t}] <n foran t» t,- ¢ s called unifonmty asymptotically
stable if it is uniformly stable and there exists h > 0 with the property
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r

that for every n > 0 there is T(n) » 0 such that for any t, > 0, !xo -
¢(t°)| < h implies that [x(titg.x,)} - of{t)| <n for t =ty +T. Observe
that h is independent of t, and T 1is independent of both t, and  x,-
Let us call v the positive semiorbit of ¢ in the phase space, that is
(= (x € R"|x = 3(t) for some t >0}, We say that ¢ is orbitally uniform-
Ly stabfe if for any n > 0 there is 5{n} such that for any t, > 0, d(xo.f)
<« & implies that d{x(t;to.xo),y} <n Sorall t>t,. Here d{x,%) repre-
sents the distance between the point X € R" and the set X« R" . If there
exists also h > 0 with the property that for every n > 0 there is T{n})>0
such that for any t, > 0, d{x ,y) < h implies that d(x(t;to,xo},y) <n for
t>t + 7, then we say that ¢ is onbitally unifoamly asymptoiically Atable.
If f in equation {10) is periodic in t uniformly with respect to x,
it 1s the case that for periodic solutions of the same period as f, simple
stability in the sense of Lyapunov implies uniform stability, asymptotic sta-
bility implies uniform asymptotic stability. Orbital stability implies orbital
uniform stability and orbital asymptotic stability implies orbital uniform
asymptotic stability [11],[12].
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