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Abstract

The averaging method for ordinary gifferential equations is brief-
ly reviewed and new results on the uniform valigity of fits approximations
over infinite intervals of time are given. As an application a syn-
chronization thecrem for weakly coupled systems is proved.

1. The Averaging Method

In this perturbation method ane considers the equation
(E) i = Ef(t-xoﬁ)

where f: Rx R " x [0,=)+ R N is continuous, has a continuous partial
derivative with respect te x and is almost periodic in t, uniformly
with respect to (x,e) in compact sets. Under these conditions f{t,x,e)
has a mean value:
1 (7
fo(x] = 1im § j flt,x,0) dt.
Trm J
0
The averaging method consists in approximating the solutions of
equation (E) by the solutions of the auezaged eguation,

{AE) X = cfo(i).
for smail values of the parameter €.

This procedure simplifies the original system (E} in, at least,
reducing its dimension by one. The fact that it is widely used in non-
linear oscillation theory is going to be corroborated by its frequent
appearance in the present callection of papers.

To give an intuitive justification of the method we witl use 3
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new time scale (+ = e¢t) in equation (E) and {AE) to have.

(E') 9x « f{r/e, x, €)
] d- -
(ARE*) E% = f (%)

Now it 4s obvious that equation (£') involves two time scajes: y varies
according to the time scale in which © is measured, but the system is
being forced on & faster scale of time ife, For small watues of e,
f{1/c, %, £) oscillates rapidly as v changes. Therefore, it is reaso-
nable to consider that in each moment t, the solution y will feel only
the average effect of the vector field f{7/F, x, €) at the point x(*)},
which is given by the mean value fo(x (T})).

2. Foundations of the Averaging Method

The following result is a generalization of Bogolyubov's theorem
on the validity of the averaging method over finite time intervals of
the form [to, %].

Theorem 1. (Ref. [11, {27}

Let us denote by x_{t} 2 solution of equation (E} for the value
¢ of the parameter. Assume that ¢(t) is a solutien of the equation
X = fo(x)L {Under these conditions, for each ¢ > 0, the function EE{t)

#

p{et) is a solutien of the averaged equation (AE)}. Then, given a
tolerance n>0 and T as large as we please, there are ¢, and &, positive,
such that (t .c) [o,m}x(o,eo} and Ixs{to}—¢(ct0)] <& implies that

|xc(t)-¢{st)i< n for all tg[to,Tfe].

This theorem justifies the averaging approximation during inter-

yals of time that can be as long as we wish, with the condition that e
is taken small enough. However, jt does not follow that for two solu-
tions xE(t) and iE(t) that satisfy the same initial condition we will
have that

1im ix _(t)-x _ (t}] = O

E"O E £
uniformly with respect to t (D,«). In fact, this is not true and it
can happen that, without mattering how small we chocse the value of ¢,
in the long run, the two solutions X_ and ic find themselyes very far
apart from each other [2]. This constitutes a strong limitation of the
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method. However, it has been proved ([4], [§], [6], {7]) that the aver-
aging approximation does not fail for sirongly stable solutions. After
giving some definitions, we will state a very general result on the
uniform validity of the averaging method over infinite intervals of
time.

Let be ¢: Rx{0,=)+ R N and 1et us denote by K 2 solution of
equation {E). We will say that ¢{t,c) has a siable neighborhood {a.n.)
as e+ 0 for the equation (£}, if for any n > O there are positive num-
bers € {n) and 8{n) such that (t Lete[0,=}x{0,¢ } and ]x (t 1- ¢(t°.c)|
< & lmplies that [x_(t)- ¢({t,e <n for all t> t

Simi1ar1y if for each ¢ > 0, L is a set in R ", we will say that
v has an onbitatly stable neighbonhood (0.4.n.) as e+0 for the equation
(E) if for any n>0 there are positive numbers e (n} and &{n) such that
(t,.<) efo,=)x(0,¢.) and dix, {t,).v) <& implies that d(x_(t).y}<n for
a11 t > to Here d{x,v) represents tha distance between the point x
and the setl Y.

Theorem 2. {Ref. [3]).

Let ¢ be a solution of x = f (x) and x (t ty % ) the sn]ution of
equation {E)} that satisfies the in1ttal condit1on xt(t ity %, ) = Xg -
(a) If o is uniformly asymptotically stable and bounded then the solu-
tion of the averaged equation, X (t} = ¢{ct) has & 4.n. as e~ 0 for
equation (E). Also, if X0 is a paint in the domain of attraction of ¢,
then given n> 0 there is so(n)> 0 such that for any D<e<g thera ex-

ists T{z)> 0 such that |!€(t;to.x°)-¢(ctli< n for all t > T,

(b)Y If ¢ is arbitally uniformly asymptotically stable and bounded with
orbit ¥ then v has an o.s.n. as €+ 0 for the equation {Ey. If Xy is a
point in the domain of attraction of v, then given n » 0 there is
EO(n)> 0 such that for any 0<e<c there exists T{e}> 0 such that
d(xE(t;to,xa). y)<n for all t > T,

Remarks.

(i) Neither {a) nor (b) require exponential stability of the solu-
tion 4, and then the theorem also applies fin the nonlinear stability
case,

(i) In an autonomous equation asymptotically stable [a.s.]) static
solutions are uniformly a.s. and orbitally a.s. periodic solutions are
arbitally uniformly a.s.. Then, these conditions are enough to guaran-
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tee the asserticns (a) and (b} respectively.

(i) The statement {a) is also true for any solution stable un-
der persistent disturbances and bounded. Ffurthermore, if we extend in
a natural way the notion of stabtlity wunder persistent disturbances for
sets tn R" then we can obtain a simitar result tc that of (b} for this
more general situation 13].

Example. Consider the van der Pol equation with rapidly oscillating.
forcing and coefficients. ' '

(N ¥+ p{t/e)(x3-1)x + wit/c) x = g{t/e, X, ).

Let us assume that the functions w and « are almost periodic with po-
sitive mean values 7 and w respectively, lel us alsp assume that
glt,x,y) is almost periodic in t uniformly with respect to {x,y) in
compact sets, and has mean value zero. Reescaling the time (1 = t/e)
and writing equation (1) as a system,we have '

=ty

ulcn.
»

(2)
9 a0 (x? -1) y - swle)x 4 glraxy),

The corresponding averaged system

(=%
1
3

= ey
(3)

I 2

= - aﬁ{iz—l}; -t X

(=9
-

has a limit cycle. By Theorem 2 the set v has an orbitally stable neigh-
boerhood, this means that the solutions of {2} that start close to v re-
main close for all future time. Also, in its domain of attraction, v
js "attracting" the so1ut}uns of (E} in the sense of assertion (bl.

The limit cycle of van der pol equation is an exponential attrac-
tor. This is because its Poincaré map is linearly asymptotically sta-
hie. However, the thecrem can also be applied to limit cycles that do
not satisfy this property [21.

3. Synchronization.

Let uws consider the eguatiaon

.

(&) § = f(t,6)
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where teR, o = (9,,...,6 }cR" and f is 2.-periodic in each component
af the vector 8. Phase-only equations Tike {4) appear in models of n
coupled ring devices [8].

Let be o = (wl,...,wn) with each w, & natural number. We say
that the systew {4) has the Aationaf synchronizatisen property with
rotation vector w,if for each to R there is an open set reR" such
that, any solution 8{t) of (4) with e(to)‘ Ir satisfy the relations:

{5) LiT PRl PR e R PRSI
That is,
61 m1.
1im — = — for i, j = 1,..., n

.t+- Bj wj

Considering that equation (1) represents a one parameter family
of vector fields on an n-dimensional torus, the condition (5} means
that the orbit of 8(t) winds, asymptotically, Wy times around the
i-axis of this terus for each wy windings around the j-axis. To have
rational synchronization with rotation vector w = (1,...,1) means that
the frequencies are asymptotically the same and it is called just syn-
chaonization,

4. Weakly coupled systems.

Here we will study a system in amplitude {x) and phase (9} varia-
bles of the form:

eG{x,8,¢e)

X
{6)

8

w+ eF{x,0,¢)

where G: R™ x R™ « [0,=)+ R ™ and F: R™ x RN & [0,») R" are con-
tinuos, 2n-periodic in each component of the vector 8, of class Cl with
respect to {x,9) for each ¢ fixed an F is bounded as a function of x
for each (8,e) fixed.

Let Z denote the set of integer numbers. We will suppose that
lm,ﬁz,...,un}cl" is an orthogonal basis of R " and A is the nxn matrix
whose rows are Wallg s R We alsoc adopt the following notation:

1

w

Go(x.u) =

E

L (T
lim ¢ J 6{x.A"(Y), 0)dv
Tan o u

Fo{x.u) = — (F;(x.u)....,Fg(x.u))

al ® W
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where ue R"™ %, ve R, the dot is the scalar product of R 2 and

i 1 T v
= = 1 =1
Fo(x,u) }iz ¥ fq F(x,A (u}.O)dv

[v] -
for {1 = 2,...,n,

The following theorem gives conditions under which the angular
variabies of the system {6) synchronizes rationally to w for small va-
lues of the parameter ¢; 1t generalizes a result by Hoppensteadt and
kenner {Ref. [9]).

Thecrem 3.

"If the auxiliary system

|-

X
v

= Go(x.u]

=¥

(7)

du - f (x,u)
has a bounded and orbitally uniformly asymptotically stable solution,
then there exists and €0 >0 such that, for D<e« £t the phase variables
(el,...,an) of the system (6) sinchronize rationally with rotation vec-
tor w. .

The proof of this theorem will give us an example of an argument
that requires the validity of the averaging method over the unbounded
interval of time [tq.=).

Proof. In the new variables v = v - 8 and Uy = ni-e for §=2,....N,
equation (6) becomes: '

X = eG{x,ATH(Y),e)

(8) e eay c FOxATH(()a¢) (for 1 = 2,...,n)

Vo= oeew 4 oewsF(,ATI()e),
Since F(x.A"(ﬁ),z) is bounded, there exists e, >0 such that for

0<e<eg the component v{t) of any solution of equations (B) tends mono-
tonically to infinite.

Eliminating time in eguations (8) we obtain



EG{K.A-I(:)DE)

dx -
dv wrw o+ su-F(x.A-:{:)-E)
{9) L
du_i Egi * F(X,A- (:)-E)
a_v-:—: [fOT'1=Z,---:n)

wew t Eu'F{I.A-l(n}-e}

whose corresponding averaged equation is the auxiliary system (7). As
this averaged system has an orbitally uniformly a.s. solution, Theorém
2 (b) implies the existence of acRMENCR
Q<e<eg, it happens that: if {x,u) is a solution of (9] and (x(vol,
u(v J)ea with Vo> 0, then {x.,u) is bounded for v > ¥, Fix vy >0 and
1et T be the set of {(y,z,v) in R™ x R"'x R such that v >V, and
{y,2z) = (x{v),u(v)) with {x,u) a solution of equation (9) that satis-
fies {x{vu), u(vo])ﬁ a. This set, ', is open and for

and €, ¢ € such that, for

if (x,8) is a solution of (6) with (x(to),ﬂ{to))af, then, for

€ £
0 L
k = 2,...,n, the function uk(t) = 8,0 9{t) is bounded for t>t . Hence,
n - 8ft)
Tim ——~———TwT
t-!--l

From this it follows that

n n.-8(t) @ i
ot k k Lo
llf: w-8lty liﬂ Lhe 22 weel{t) & —nk] wrw

Therefere, for = < ¢, if {x{t ), e(t Yler, then

{t) (t)
Hm?--{—-}-=liln-%m-—H :’- {(for 1.5 = 1.....n).

This proves Theorem 3.
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