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Abstract. An understanding of the nonlinear dvnamics of bursting is funda-
mental in unraveling structure-function relations in nerve and secrelory tissue.
Bursting is characterized by alternations between phases of rapid spiking and
slowly varying potential. A simple phase model is developed to study endo-
genous parabolic bursting. a class of burst activity observed experimentally in
excitable membrane. The phase model is motivated by Rinzel and Lee’s
dissection of a model for neuronal parabolic bursting (J. Math. Biol. 25,
653 675 (1987)). Rapid spiking is represented canonically by a one-variable
phase equation that is coupled bi-directionally to a two-variable slow system.
The model is analyzed in the slow-variable phase plane, using quasi steady-
state assumptions and formal averaging. We derive a reduced system to
explore where the full model exhibits bursting, steady-states, continuous and
modulated spiking. The relative speed of activation and inactivation of the
slow variables strongly influences the burst pattern as well as other dynamics.
We find conditions of the bistability of solutions between continuous spiking
and bursting. Although the phase model is simple, we demonsirate that it
captures many dynamical features of more complex biophysical models.
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1 Introduction

Some cells known as bursting pacemakers fire with a pattern that alternates
between a silent phase of stowly changing membrane potential and an active

This research was partially supported by NSF-JOINT RESEARCH grant 8803373, grant .
from CONCYT and DGAPA(UNAM) Mexico for H. Carrillo. and for the S. M. Baer NSF
DMS-9107538



310 S. M. Baer et al.

a

Fig. 1. Two kinds of burst pat-

b terns. a A square-wave burster
} ”! ] computed using the Morris and

Lecar model (from [24]); b A
parabolic burst pattern generated
v from the phase-burster model
(1)-(3) with parameter values
£, = 0.0050. ¢, = 0.0015.a = 2.
b=51=~165p, = -0.3,
p,=—03,and V =sind()

phasc of rcpetitive spiking (sec Fig. 1). Such activity has been obscrved
experimentally in isolated ncurons, in neuronal ensembles {(e.g., central patiern
generator networks for activation of rhythmic muscle contraction), and in
sccretory and muscle tissue [16]. Bursting requires at least two different time
scales, one on the scale of slow modulations (10! to 10 s) and the other on the
scale of individual action potentials (1 to 10 ms).

In this paper we formulate a tractable mathematical model for endogen-
ous parabolic bursting to analyze transient and long-time behavior on both
fast and slow time scales. Specifically, we couple a one-variable phase oscil-
lator (or ring) model for fast spiking to a slow subsystem. We employ the
method of averaging [28] to reduce the full model to an analytically accessible
set of differential equations on the time scale of the slow oscillations. Although
by averaging we lose the detailed time course of individual action potentials,
we gain a biophysically meaningful description of the averaged effect of rapid
spiking. Explicit averaging of rapid spikes in biophysical models has also been
carried out in studies of neuronal ensembles where synaptic conductances
vary slowly [25, 10].

Ring models follow the timing of individual action potentials (rather than
their amplitude and shape) and have been used effectively to construct and
analyze simplified models of excitable cells [33], coupled neural oscillators
[30), reaction-diffusion systems [9], and parabolic burst activity (externally
forced, to lowest order) [8]. Ring models track the phase angle 0 of each spike,
so when there is repetitive spiking, as is the case during the active phase of
a burst, 0 increases rapidly through multiplies of 2n. When repetitive activity
ceascs, 0 approaches a steady-statc and for burst mechanisms this steady-state
may be slowly varying.
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- We confine our study to endogenous parabolic bursters. A burster is called
endogenous if the slow subsystem is coupled bi-directionally to (i.e., it affects
and is affected by) the fast membrane dynamics. Endogenous bursters are
unlike follower bursters which are driven by external forcing [24]. Mathemat-
ical models of endogenous bursting mechanisms are ofien modifications of the
Hodgkin-Huxley model [17] with additional variables to account for the
slowly modulated activity [23, 26, 19, 27].

Figure 1 shows two different types of endogenous burst patterns a square-
wave burster (Fig. 1a) and a parabolic burster (Fig. 1b). The squarc-wave
burster shows a relaxation-like character. The mean membrane potential
jumps discontinuously when spiking begins and the spike frequency decreases
at the end of active phase. This pattern is characteristic of electrical bursting
activity observed in insulin-sccreting f-cells of the islet of Langerhans in the
pancreas [1]. There have been numerous Hodgkin-Huxley-type models ex-
ploring the biophysical mechanisms underlying bursting in f-cells and re-
cently singular perturbation methods have been applied to this class of models
[31, 22, 29]. The parabolic burster (Fig. 1b) rides on a smooth sinuscidal-like
slow wave. The burst is called parabolic because the instantaneous spike
frequency is low at both the beginning and end of an active phase, The R-15
neuron in the abdominal ganglion of Aplysia is an example of a parabolic
burster and has been modcled by Plant [23] and studied qualitatively and
numerically by others [26, 4, 5]. Parabolic bursting depends on there being at
least two slow variables (for opposing cffects: to promote or suppress rapid
spike generation). In contrast, square-wave bursters neced only one slow
variable but with the requirement that the fast variable subsystem exhibit
bistability [24].

This paper is organized as follows. Our model and some of its properties
are described in Sect. 2. In Sect. 3 we derive the reduced system of equations
and construct its nullclines in the slow-variable phase plane. In Sect. 4 we
compare in the slow-phase plane trajectories generated by the phase burster
with those generated by the reduced system. We find parameter regimes for
bursting, steady states, pure slow waves, and continuous spiking. From the
bifurcation structure of the reduced system we identify conditions for bistable
solutions, modulated spiking, and more complex dvnamics where formal
averaging breaks down. Finally, in Sect. 5 we discuss in detail how the
dynamics of the phase burster compares to a typical biophysical model for
parabolic bursting. To facilitate this comparison we construct averaged null-
clines for Rinzel and Lee’s Ca-Ca model using a numerical procedure de-
veloped recently by Smolen et al. for a fi-cell model [29].

2 Phase model for parabolic bursting
In our idealized phase oscillator model for endogenous parabolic bursting, we

denote the two slow variables as x and y; x activates and v depresses the fast
spike generating process characterized by phase angle 6. The phase burster
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equations have the form

do
-E;=] —cosl + A(x, y) (M
dx

' E = sx[-\fx(O) - -\] 2)
d
-t% =g, [y, (0) = y] G)

where ¢,, &, are parameters representing speed of activation and inactivation
{usually of order less that one), and x, . v, are 2n-periodic functions of 0 that
strictly increase for — n:2 £ 0 £ 0. Unless otherwise specified we choose

x, (6) = sin(p, + 0) 4)
Yo (0) = sin(p, + 0) (5)

where p, and p, are constants. We choose sinusoids to keep the model simple
and analytic, but other forms are possible.

The stow subsystem, driven by 0, feeds back to the fast subsystem 1o
provide bi-directional coupling through the activation function A(x,y)
defined by

Alx, y) = tanh(ax — by + 1), (6)

where @ > 0, b > 0. The net externally applied stimulus [ is our primary
control variable, Bursting occurs when the slow system {2-3) sweeps A(x, y)
back and forth across 4 = 0. When — | < 4 < 0 (silent region), 0 is attracted
to a slowly varying steady-state 6,. When 0 < A <1 (active region), (1)
destabilizes and 6 respectively increases with time scale O(1) through multi-
plies of 2=, corresponding to repetitive spiking. As A decreases toward 0, the
cycle time for 0 becomes infinite. The burst pattern shown in Fig. 1b is
computed with (1)-(6), using sin 0 10 represent the membrane potential.

Figure 2 illustrates schematically how variations in the net stimulus I can
lead to different responses. When there is strong inhibition there are no
oscillations, the slow variables x, v and the fast variable § approach a stable
steady-state (SSS). At the other extreme, strong excitation, there is continuous
spiking (CS); x and y go to a steady-state, but 0 continuously increases
through multiplies of 2r (4 > 0). Bursting (B) is realized when the net stimulus
induces a slow wave trajectory (x and y oscillations) that oscillates about
A = 0. A pure slow wave (PSW) occurs when there is no spike activity; i.e.,
when A < 0 during slow oscillations. Modulated spiking is characterized by
frequency modulations.

The phase burster (1-3) is intended 10 be a simplified model, representative
of a class of models for endogenous parabolic bursting. It is motivated by
Rinzel and Lee’s dissection of Plant’s model for neuronal parabolic bursting
[26]. We incorporate into our model the necessary dynamical features, identi-
fied from their analysis, that lead to parabolic burst activity. We neglect other
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PSW 4 how bursting and other dynamics

v can be generated using the phase-
@ burster model. The schematic shows
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the slow variables approach a limit

cycle that crosses back and forth
across 4 =0

X

features in the more complex models which play a secondary role, to keep our
model as simple as possible.

Figure 3a shows the time courses of V, Ca, and x for a burst solution to
Plant’s mode); Ca and x are the slow variables and V, representing membrane
potential, is one of the fast variables. Biophysically, x is slow V-dependent
activation of a calcium current (which turns on spiking) and Ca represents
intracellular calcium concentration (governed by slow kinetics) which acti-
vates a potassium current (turning off spiking). The dynamics of bursting is
dissected, mathematically, by first considering how the fast variable V changes
when the slow variable Ca is treated as a static bifurcation parameter, while
fixing x. Figure 3b is a bifurcation diagram showing a branch of periodic
solutions emerging via a Hopf bifurcation at HB. This bifurcation is subcriti-
cal, so the emergent periodic orbits are unstable. The large amplitude orbits
for Ca increasing beyond the knee are stable and they correspond to repetitive
spiking. The periodic solution branch terminates at HC, with a homoclinic
orbit at a saddle-node of fixed points. This termination structure (SNIC:
saddle-node on an invariant circle) has co-dimension one and defines a curve
in two-parameter space [15]. As Ca approaches HC the frequency of the
periodic solutions approach zero. This transition boundary curve, HC, exists
over the entire range of x (Fig. 3c).

Bursing oscillations occur when Ca and x are dynamic slow variables that
sweep back and forth across the HC boundary (see Fig. 3c). When the
trajectory generated by the slow subsystem is above HC the fast subsystem
has a stable limit cycle. When it intersects the transition boundary a saddle
node is created, and as the trajectory passes below HC a stable node splits ofl
the saddle node causing the spike activity to cease as V relaxes and following
the slowly varying steady-state V(x, Ca). Spiking drives Ca upward with the
effect of slowly depressing the system until the activation variable x relaxes
quickly to a lower value. Repetitive spiking ceases since the (Ca, x) trajectory
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Fig. 3. The dissection of a biophysical model for parabolic bursting. From Rinzel and Lee
[26]. a Time courses of ¥V, Ca and x for a burst solution to Plant’s model. b Bifurcation
diagram of V versus Ca for x fixed (x = 0.7). HB denotes a Hopf bifurcation and HC
a homoclinic bifurcation. ¢ A two paramcter bifurcation study of the same model. HC
scparates the active and silent regions. playing the same role as the line 4 = 0 in the phasc
burster model (see Fig. 2); the slow trajectory exhibits oscillations only on one side of the
HC boundary

falls below HC. However, after cessation of repetitive activity, Ca starts
decreasing slowly until the trajectory crosses above HC due to a re-triggering
of the activation variable x. Note that the Hopf boundary HB is not directly
involved in the burst dynamics, and therefore plays a secondary role. We
discard this feature in our formulation of the phase model.

The phase burster is essentially a canonical representation of these auton-
omous interactions among variables. The fast system is characterized using
ring dynamics (see Fig. 4). Bursting oscillations occur when the slow variables
x and y cause the activation function 4(x, y) to sweep back and forth across
A = 0. When 4 is positive the phase angle 0 on the ring (see Fig. 4a) increases
through multiplies of 2x. corresponding to repetitive spiking. When 4 is zero,
saddle nodes exist at multiples of 2z in (1) (see Fig. 4b), and for A negative
there are two singular points for each multiple of 2x; a stable node and
a saddle node (Fig. 4c). When A4 is negative, 0 tracks a slowly varying stable
manifold given by 0,(x, y). As for this ring model, the detailed models have an
invariant circle in phase space which persists across the HC boundary; on one
side of HC, there is a pair of fixed points (saddle and node) on the circle.
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Fig. 4. The fast subsytem is governed by ring dynamics. The curves plot the right hand side
of {1) over two periods (4n). The rings represent the dynamics of 0 for the three cases
A positive, zero, and negative. Recall that 4 is coupled bi-directionally 10 6 through x and y.
a When A4(x, v} > 0, dli/dr is always positive. The phase § increases through muktiples of 2n
on the ring, corresponding to fast oscillations. b The case A(x. y) =0 is analogous to
a homoclinic bilurcation boundary (see Fig. 3¢c). ¢ When A(x. v) < 0, the phase 8 has two
singular points every 2a, one stable and the other unstable; @ slowly tracks the stable one
(moduli 2x) as x and y slowly change

The slow and fast subsystems of the phase burster are bi-directionally
coupled. When the slow system has disparate time scales (¢, € ¢, or ¢, < ¢,)
slow waves may behave like relaxation oscillators. It is easy to see from an
inspection of the activation function (6) that x activates and y depresses the
fast subsystem; the sigmoidal form of the hyperbolic tangent acts as a switch
that activates the fast subsystem. On the other hand, the slow system cannot
oscillate without variations in €. Thus the slow system drives the fast and the
fast drives the slow, as in biophysical models for parabolic bursting.

Figure 5 shows the time course of sin 0, y and x for a burst solution to
(1-3); sin 0 behaves like V and the slow variables, y and x, behave like Ca and
x (in Fig. 3a), respectively. Although the phase burster is a simple model, 1t
captures many dynamical features of more complex models (compare Fig. la
to Fig. 5).

Computations in this paper were performed on a VAX 8600 using both
Gear’s method [12] and a classical fourth-order Runge Kutta method [13].
Preliminary calculations made extensive use of G.B. Ermentrout’s program
PHASEPLANE [7], and another phase plane analysis too! called INTEGRA
developed at the Universidad Nacional Autonoma de Mexico. Bifurcation
diagrams were constructed using Runge-Kuuia with vectorization over the
range of the bifurcation parameter; a time step of 107 % was used in the silent
regions and 102 in the active regions. AUTO [6] was used as a check and
also to compute unstable and homoclinic points of bifurcation, as well as limit
points. Gear’s method was used for calculations of parabolic bursting for
Rinzel and Lee’s [26] Ca-Ca model. We construct the averaged nullclines in
Tig. 12 using a mcthod recently developed by Smolen et al [29], in which
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Fig. 5. A burst solution to the phase model. Time course of V = sin 8, v and x. Here x_ and
v, are represented by sine functions (see (4) and (5)); &, = 0.01. ¢, = 0.0012, a = 2, b = 5,
I'= =274, p, =13, p, = 0.4. The burst solutions arc qualitatively similar to Plant's model
(compare Fig. 3a)

AUTO finds nullclines for the slow variables when the fast variables are
periodic by averaging over the fast oscillations. This numerical procedure is
not needed for the phasc burster model since we can derive the averaged
equations explicitly.

3 The reduced system and its phase plane structure

In this section we reduce the dynamics of (1)—(3) to the slow-variable phase
planc by exploiting disparities in time scales between fast and slow sub-
systems. We derive equations for when the fast system settles into a quasi-
steady-state (4 < 0). Finally, we characterize analytically the structure of the
x and y nullclines in the phase plane.
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For A <0, (1) has two equilibrium points, @, anc J,, one stable and the
other unstable. They are given by

0, = + arccos(l + A(x. 1)) (M)
0, = — arccos(l + A(x.y)). (8)

where the range of arccosine is restricted to {0, n/2) since — 1 < 4 <0, and
therefore — n/2 < 8, < 0and 0 < 0, < /2. The function Oy(x, y) constitutes
a stable two dimensional slow manifold of the system [32]. For 4 <0,
solutions to (1-3) rapidly approach this manifold, at lzast to leading order in
e, and £, [18]. The slow trajectory (x, y) in the silent region is given by the
quasistatic approximation

dx

Er- = & [x:v.(Ol(x7 _‘)) - -\] ’ (9)
d", — . - 1 — .

i e[ ) (Os(x, 3)) —¥] . (10)

For A > 0, the slow dynamics in the oscillatory region. derived from formal
averaging, is governed by

dx,, - Cu M.
dr =&y [~\ X (A(‘\ar- .‘ul')) N ] “ 1)
d."m. _ [ - ( 4( , o (12
“.’ - I:)' .\ @ A xm:v _\ur)) .‘an] . )
where,
- 1 [ x.(0
X (4) = T(A) L 1 —cos0 + 4 4 a3

Y« (6) de .

_ 1 2x
-"-(A)“T(A)L I —cos0 + 4 (14

Here T is the slowly varying period, found by integrating (1) from ¢ = O to 2=,
while holding A fixed:
T(A) = J“ do

o 1—cosf+ A
- (15)
V0A+1) =1

We obtain closed form expressions for ¥,{4) and §, (.4} using the sine model
for x, and y,. Substituting (4) and {5) into (13) and (13\. respectively we have
after integrating

S, =sinp, [(A+ )= J/A+ 1 -1] (16)

Fe=sinp, [(A+ )= JA+1)*=1]. (17)



318 S. M. Bacr ct al.

Together, the quasi-static (9)-(10) and averaged equations (11)-(12), consti-
tute the reduced system for the phase burster (1)—(3). Its solutions are continu-
ous and differentiable for 4 # 0. As 4 — 0 the component systems match
asymptotically (compare (16)-(17) for A = 0 with (4)—(5) for & = 0). To venfy
this in general, substitute (135) into (13) and (14); for x,, we have

2"x,_(9)\/(1+,4)2—1d0 (18)

- _ 1
'\“('4)“2n_[0 1 —cosf+ A

Note that the integrand approaches zero for small positive A everywhere
except near (0 =0 and 6 = 2a. Near these endpoints x, () ~ x(0). since
X, (0) is 2n periodioc and well behaved. Therefore, as 4 — 0%, we can replace
x,(0) by x,(0) in (18) and integrate again using (15). After simplifying, we
obtain X, (A4) ~ x,(0) as 4 - 0*. Similarly, v, (4) ~ yv.(0)as A - 0".

The reduced system can be studicd in the phase plane since its constituent
subsystems are cach second-order. The x-nulicline 1s the set of points in the
xy-plane where the solution trajectories are vertical (X = 0) or vanish. The
y-nullcline is the set of points where the trajectories are horizontal (y = 0) or.
vanish. We denote X = 0 to be the part of the x-nullcline that lies in the silent
region and X, = 0, the x,,-nullcline, the part that lies in the oscillatory region.
Likewise, we distinguish the two portions of the y-nullcline as y =0 and
¥or = 0. The nullclines arc smooth curves for A # 0. At points where 4 = O the
nuliclines are continuous but not necessarily smooth. Continuity of the
nullclines is assured at 4 = 0 since both £, (4) and ¥, (A4} are asymptotic to
X (0) and y,.(0) respectively, as A approaches zero.

The x-nullcline in the silent region ( — 1 < A < 0) is a function of x and
is found by sctting the right side of (9) to zero. We can characicerize the
x-nullcline analytically using the following parameterization:

x(0,) = x,. (0,) (19)

Y01 =1 [ox,.(6) + 4 Ini2sec0, — 1)+ 17, (20)

where — n/2 < 8, < 0 from (8). The y-coordinate (20) is found by solving for

y in terms of x in (6) using the log equivalent of the inverse hyperbolic tangent

(tanh™' A =41In((1 + A) (1 — 4})). and then replacing A by its quasi-siatic

approximation (cos 0, — 1), found by solving for A in (1} after setting d0/dt = 0.
The derivative of the x-nullcline is then

dy a tanf,

—=-11 - . 21

ax b[ +a(2—c050,j.\",_(0,)] =h
where x', (0,) > 0 since x, is strictlly increasing over the domain of 0,. As
x increases from x, ( — = 2) the x-nullcline decreases from its vertical asym-

ptote, rcaches a minimum. and then eventually increases until it approaches
tangently the line 4 =0, at the point (x, (0), a b x, (0} +1/b). If X7, (0,)> 0. then
it is casy to show that y”(x) > 0. For this case the x-nullcline is a U shaped
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Fig. 6. Nullclines and curve A(x, y) = 0 in the xy phase plane. The silent region is 4 <0
and the active region is A > 0. The x and y nullclines are computed from the quasi-static
approximation given by (9)-(10) for A <0, and the averaged approximation (11)—(12) for
A > 0. The inset is a rescaled view showing both y-nuliclines. The equation of the line 4 = 0
is ax — by + 1 = 0. The x nullclines converge a1 C, on the line A = 0, and form a cusp. The
y-nullclines also form a cusp, as shown in the inset. Parameter values are the same as in
Fig. 5 and Fig. 7¢

curve that monotonically decreases from infinity, reaches a minimum value
and then increases monotonically until it touches the line 4 =0. The sine model
(4)-(5) satisfies this condition and its x-nullcline is U shaped as shown in Fig. 6.

The structure of the y-nullcline in the silent region can also be determined
from a parametric representation:

x(ﬂ,)=%[by1 (0,) — 3 In(2secO, - ) —1] (22)

."(05) =Y (es) (23J

The y-nullcline is an increasing function of x in the silent region since

’ « -1 ’
d_-‘=f[| tan0, ] >0 (24)

dx b|  b(2-cos0,)y, (0,
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Therefore, the y-nullcline rises (shown in Fig. 6 12set) from a horizontal
asymptote until it approaches tangently the line 4 =0 at the point
{bla y,(0)—1I'a,y,(0).

Similarly, in the active region (0 < A < 1), the x_.-nullcline can be charac-
terized analytically by first setting the right side of (11) to zero and then
parameterizing as follows:

Xa(A) = X, (4) (25)

1 -
Yar(A) =5[ai,(A) —%In (: — :) + I] (26)

once again utilizing (6) and the relation tanh™' 4 = L In((1 + A) (1 — A)).
In order to satisly the required condition that x,(6) and y, (0) are

increasing functions on ( — n/2,0) we assume for the sine model that

Px- Py €10, 7/2). This requirement for 4 > 0 implies that both ¥, (4) and

¥, (A) are negative. which becomes evident after differentiating (16) and (17).
The derivative of the x,.-nullcline in the oscillatory region is then

dv, a !
o ar —_ _ 27
dx,., b [l a(l — Az)f;(‘-h] (27)

where, for the sine model

.f'x(A)=sinp,[l ———ﬂ———]<0. (28)

JA+ 1P =1

Therefore, as A decreases from A = |, the x,,-nullcline increases monotoni-
cally from its vertical asymptote as shown in Fig. 6 (insct), It continues to risc
until it becomes tangent to the line A = ( where it is continuous, as expected,
with the x-nullcline from the silent region.

The y,.~nulicline has the parametric form

i I 1+ A4
x,,,.(A)=EI:bJ"l(A)+Eln(1tA)-—l] (29)

Yar(A) = ¥ (A) (30)

where §,, is a decreasing function given by (17) above. The derivative of the
va-nullcline in the oscillatory region is then

Ay, _a 1 -1
dnr—B[L+MI—AﬂﬂAAJ Gh

where, for the sine model

.\‘;(A)=sinp,.l:l ~———'—4—-t-1-——-—-:|<0. (32)

JA+ 1)1

As 4 approaches zero, J, approaches negative infinity and therefore (31)
approaches the slope a/b through positive values. Again, as expected, the
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va-nullcline is continuous with its counterpart emerging from the silent
region. As 4 nears ong, the nullcline approaches a horizontal asymptote from
above. Within the interval 0 < 4 < 1, (31) is never zero but can change sign.
Therefore, the v, -nullcline may have at least one vartical asymptote (see
Yur = 0 in Fig. 6 inset).

The complete set of nullclines and the line A = 0 for the sine model) are
drawn and labeled in the inset of Fig. 6. The x and y nullclines, on both sides of
A = 0. converge continuously into cusps (denoted by C in the figure) termina-
ting on the line 4 = 0. An intersection of x and y nullclines corresponds to
a steady-state solution; in Fig. 6, the nullclines interssct in the silent region
A <0

The phase plane structure in Fig. 6 is consistent with the schematic
slow-variable phase plane described in Fig. 2. A stable steady-state in 4 <0
corresponds to a stable steady-state of the full system. but a stable steady-state
in A > 0 corresponds to continuous spiking. A limit ¢cycle confined 10 the
region A < Qis a periodic slow wave and a limit cycle entirely in region 4 > 0
is modulated spiking. Bursting is a limit cycle that traverses back and forth
across A = 0. In the next section we integrate both the full and reduced
equations and superimpose their solution trajectories in the slow-phase plane,

4 Phase burster dynamics

We now analyze the phase burster in the slow phase plane and determine
critical parameter vilues for bursting, pure slow waves, continuous spiking,
steady-states, and modulated spiking. We will show that the reduced system
{9)-(10) has dynamics similar to other two variable models of excitability, such
as the FitzHugh-Nagumo [11] and Morris-Lecar [21] equations; e.g., super
and subcritical Hopl bifurcations, saddle nodes, and intervals of repetitive
activity. Furthermore, when ¢, < ¢, or vice versa, the reduced system has
singular behavior and relaxation oscillutor properties [20, 14]. We use the
reduced system to determine parameter values for the values for the full model
that bracket lower and upper thresholds for bursting. steady states, continu-
ous and modulated spiking. We also find conditions for bistability of solutions
between continuous spiking and bursting.

We begin our analysis by studying solution trajectories in the phase plane.
Figure 7a-d compares computed solution trajectories for both the full and
reduced systems for £, € &,. The nullclines and the line 4 = 0 are labeled in
Fig. 6. Figure 7 trajectories for the reduced system (dashed) track closely the
trajectories for the full system (solid), except trajectory 2 in Fig. 7a, where they
move slightly apart after entering the silent region.

Figure 7a illustrates the case of a stable steady-state in the silent region
{4 < 0). Trajectory 1, initiated in the silent region, spirals into the fixed point
located where the x and y nullclines intersect. There are no fast oscillations
since the trajectory’s path lies entirely in the silent region. However, trajectory
2 emerging from the active region, has small oscillations as it passes upward
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Fig. 7. Dynamical features of the phase burster model for &, < &,. Except for I the
parameter values are the same as in Fig. 5. Trajectories of the full (solid} and reduced (short
dashed) systems are in good agrecment for the chosen parameters. Compare this figure with
Fig. 2 and the bifurcation diagram in Fig. 8. a ] = —4,74: Two trajectorics, 1 and 2,
initiated on opposite sides of the line 4 = 0 both converge to a steady-state in the silent
region. The tite course fer trajectory 2 is displayed in the insct. Initizl conditions are (0.2,
— 0.65)and (0.9. — 0.9) for trajectories 1 and 2. respectively. This value of J corresponds 1o
SSS in Fig. 2 and case a in the bifurcation diagram of Fig. 8. b J = —4.24: A single
trajcctory initiating at (0.6. — 0.8) in the active region approaches a limit cycle entirely in
the silent region. The time course settles into a periodic slow wave (PSW in Fig. 2and case b
in Fig.8).¢ 1= —2.74: The trajectory from (0.120, — 0.256) approaches a bursting solution;
case ¢ in Fig. 8 and B in Fig. 2. This case is identical to Fig. 5.d [ = 0.26: Trajeclorics arc
initiated on opposite sides of 4 = 0. but both converge 10 a steady-state in the active region.
which corresponds 1o the continuous spiking case CS in Fig 2 and d in Fig. 8. Initial
conditions arc (0.9, 0.3) and (0.1. 0.3). The time course of trajectory 1 is shown in the inset

and vertically over the x,-nullcline. The trajectory crosses into the silent
region nearly tangent 10 4 = 0 before spiraling counterclockwise into the fixed
point. The time course of trajectory 2. shown in the inset. exhibits repetitive
spikes that decrease in frequency just prior to settling into steady-state.
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The trajectories shown in Fig. 7b are initiated in the active region and
approach a limit cycle confined to the silent region. The time course starts
with rapid spiking, but then quickly settles into pure slow waves with “saw-
tooth” oscillations, a characteristic feature of small amplitude oscillations [2].

Figure 7c illustrates burst activity. The counterclockwise trajectory is
nearly tangent to the line 4 = 0 before leaving the oscillatory region. Conse-
quently the period T{x, v) increases just at the end of each active phase. This
feature is displayed in the inset to Fig. 7c, which shows a burst solution to the
full problem for these same parameter values. The last few spikes of each
active phase shows a marked decrease in spike frequency. Also observe that
these bursts ride on slow oscillations which is charactenstic of a bursting
pacemaker neuron, and sin @ is nearly zero at the beginning and end of the
active phase.

In Fig. 7d. both trajectories 1 and 2 approach a fixed point where the
X, and v, nullclines intersect. Continuous spiking resuits, since A4 > 0.
Trajectory 1 (time course in inset} starts in the silent region and then con-
verges 10 a fixes point in the active region. Trajectory 2 starts in the oscillatory
region and converges to the same fixed point.

The bifurcation structure of the reduced system, for ¢, < ¢,, is shown in
Fig. 8. The net stimulus / is chosen as the primary control parameter. At the
lower range of the net stimulus (I = — 6), the activation function is in the
silent region (4 < 0). Solution trajectories converge to a stable steady state
(SSS) there. The values of I indicated by a—d in the figure correspond to the
parameter settings for Fig. 7a-d.

There is a (supercritical) Hopl bifurcation to periodic solutions at HB
(] = — 4.42). Here, the activation function is negative, so the full system
exhibits pure slow waves PSW (c.p., Fig. 7b). The periodic branch is near
vertical due to the disparate time scales of the slow system. Consequently, for
I just to the right of HB the slow waves have small amplitude relaxation
oscillator properties, such as the sawtooth wave pattern in Fig. 7b inset (see
Baer and Erneux [2, 3] for an analysis of two-variable singular Hopf bifurca-
tions to relaxation oscillations). For larger values of I the activation function
continues to oscillate but sweeps positive for a fraction of its period (see inset),
which corresponds to bursting in the full model (c.p., Fig. 7¢). The dashed
curve B is the fraction of time that the burst solution spends in the active
phase (use same scale as A); time spent in the active phase increases as
I increases.

Over the interval — 2 < ] < 0 the activation function spends much of its
time in the vicinity of 4 = 0, and the leading order estimate given by aver-
aging breaks down (In cases where the slow trajectory remains near a SNIC
curve, like 4 = 0, one could apply the analytic method developed by Ermen-
trout [10] 1o approximate the slow trajectory.) Numerical solutions of the {ul}
system in this domain have complicated dynamics; as / approaches zero (the
cusp) bursting and spiking become irregular. Hodgkin-Huxley like bursting
models exhibit a similar transitional behavior (see Discussion). Finally, for
I positive, the system spikes continuously CS {c.p,, Fig. 7d). The horizontal



34 v S. M. Baer ¢t al.

1.0 A

0.5 A

0.0 ~

~0.5 o

-1.0 -

-1.5
-6

Fig. 8. Bifurcation structurc of the phase for &, €¢,. computed from reduced system:
{9)-(10) and (11)-(12). Parameicr values with the exception of I are given in Fig. 5. The
figure shows that as the static values of I increasc, the system undergoes a Hopf bifurcation
at HB from a stable steady-state SSS to periodic slow waves PSW, and then a transition to
bursting B followed eventually, for large values of 1, by continuous spiking CS. The long
dashed curve indicates the domain of I over which the reduced system exhibits organized
bursting. The long dashed curve also indicates the fraction of a burst period that the system
is in the active phase (use same scale as A). The curve is not continued in the vicinity of the
cusp since the reduced system is not rcliable there. The values of I denoted by a—d
correspond to Fig. 7a—d

dashed line above the CS curve indicates that the system eventually spends all
its time in the active phasc.

When ¢, < &, the bifurcation structure is quite diflerent. Instead of a Hopfl
bifurcation from SSS to PSW, Fig. 9 shows that the system apparently goes
directly from SSS to B through a homoclinic bifurcation. The dashed curve
labeled UCS is an unstable steady-state branch. which corresponds to
a branch of unstable continuous spiking solutions for the full system. At large
stimulus values, the reduced system has a stable steady-state. therefore the full
system spikes continuously. Unlike Fig. 8, there is a Hopf bifurcation for
A > 0 rather than for 4 < 0. Just to the right of HB two kinds of stable
solutions coexist a stable stcady-state and a large amplitude periodic solution.
The stable steady-state corresponds 1o continuous spiking and the stable
periodic solution corresponds to bursting. since A alternates sign each cycle
{sec Fig. 11a and b, respectively). The bifurcation is subcritical, so the local
periodic branch is unstable, and periodic solutions on this branch correspond
10 unstable modulated spiking UMS in the full system (see Fig. 11¢). In this
bifurcation structure there are no values for I that give rise to stable slow
waves. To obtain stable modulated spiking would require a supercritical Hopf
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Fig. 9. Bifurcation structure of the phase burster for &, < ¢,. Parameter values the same as
in Fig. 8, except £, = 0.002 and ¢, = 0.008. Bifurcation diagram predicis stable steady states
(SSS) for the full system if I negative or small positive. For large values of [ there, / > 0.2) the
reduced system predicts continuous spiking (CS). but changes stability through a Hopf
bifurcation (HB) near ! = 0.2. The periodic solutions to the left of the Hopf point corres-
pomd to bursting (1), since A changes sign repetitively. The dashed curre labeled UMS s an
unstable periodic branch of the reduced system. This subcritical branch corresponds 10
unstable modulated spiking (UMS), since 4 > 0. Furthermore, the subcritical structure
implies bistable behavior for 1 just to the right of HB (Fig. 11). The other dashed curve is an
unstable steady-state of the reduced system for A > 0 and corresponds 10 unsiable continu-
ous spiking (UCS). The values of I denoted by a-d are used in Fig. 10

bifurcation for 4 > 0. A local bifurcation analysis (not provided here) of the
averaged subsystem (11)-(12) demonstrates that the bifurcation is always
subcritical. Consequently, for our mode! in its present form, there are no
stable solutions exhibiting modulating spiking. We note that coexistence of
bursting and continuous spiking behavior has also been found in a parabolic
burster model by Canavier et al [4].

The dynamics of the solution trajectories for £, < ¢, also differ significantly
from those shown in Fig. 7. Panels a~d in Fig. 10 correspond to the values of
I labeled in Fig. 9. First observe that the trajectories are clockwise rather than
counterclockwise as they were in Fig. 7, and the time scales of the burst
solutions are much longer. In Fig. 10a the nullclines intersect in the silent
region very near A = 0. Consequently, a trajectory initiated in the oscillatory
region moves upward, but unlike in Fig. 7a it is forced to follow parallel and
close to the line A = 0. Figures 10b and ¢ have nearly identical nullclines, since
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Fig. 10, Dynamical features of the phase burster model for ¢, < ¢,. Parameter values the
same as in Fig. 9 and [ vitlues correspond to a-d in that figure. a2 / = ~0.05: a trajectory
initiated in the oscillatory region converges to a steady-state in the silent region. The time
course (sin @ vs. 1) is shown in the inset. b [ = 0.07: a burst solution with a long silent phasc.
This stimulus value is near the homeoclinic bifurcation point where bursting emerges from
a stable steady-state (see Fig. 9). The trajectory is near 4 = 0, during the silent phase. which
explains why sin @ is approximately zero. The small arrow denotes where nuliclines inter-
sect, ¢ 1 = 0.10: away from the homoclinic onset of bursting the silent phase is shorter,
although the nullclines change orientation very little. d I = 0.28: a trajectory initiated in the
silent phase drops to the y-nullcline. follows parallel to 4 = 0. then crosses into the
oscillatory region at the cusp and spirals into a slcady-state. The steady-state corresponds
1o continuous spiking (sec insct)

I differs only slightly. Even their phase plane trajectories are nearly identical.
However. an examination of the time course (inset) shows a distinct difference
between these two figures. The silent phasc in Fig. 10b is over twice as long as
that in Fig. 10c. This longer silent phase is due 10 the fact that [ is closer 10
a homoclinic point of bifurcation than in Fig. 10c. This feature can be
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Fig. 11. Bistable behavior of £, < £,. Same parameters as in Fig. 9. but all solutions are
computed dircctly from the full model (1)-(3). Using the reduced system’s bifurcation
diagram as a guide, I is fixed at 0.24. in the vicinity of bisiability. Slow variables are set
initially to x, = 0.4980884 and vy = 0.2013005 corresponding 10 stable continuous spiking.
a Top: in response 10 a small amplitude perturbation from stable continuous spiking (x,
perturbed by & = 0,18000 x 102}, the full system returns to continuous spiking through
frequency modulated spiking. although on this time scale frequency modulations cannot be
resolved (see (c) below). Middle: the frequency of fast oscillations plotted as a function of
time decays 10 steady-state. Lower: the related activation function also decays 1o steady-
state. b In response 10 a larger perturbation (& = 1.9173 x 107 ?). modulated spiking grows
{middle and lower) until the onset of bursting, which occurs at about 1 = 110 x 102. The top
graph shows the onset of bursting. but as in (3) frequency modulations cannot be resolved
on this time scale. ¢ Unstable modulated spiking: expanded view of the top time course in
{a) for 1 between G and 2500, On this scale frequency modulation can be observed

predicted from the bifurcation diagram of the reduced subsystem in Fig. 9:
labe! b is closer to the homoclinic point of bifurcation than label c¢. This
explains why during the silent phase the time course (inset} appears flat. This
feature, common to all panels of Fig. 10, is not usually associated with
parabolic burst activity: typically. trajectories characteristically ride on
sinusoidal-like slow waves.

Figure 10d illustrates continuous spiking. Observe the indirect path fol-
lowed by a trajectory initiated in the silent region. The trajectory first drops
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sharply to A = 0. hugs this line until it reaches the cusp, then crosses into the
active region where it finally approaches the fixed point. Thus, common to
both Figs. 7 and 10. large net stimuli result in continuous spiking, which is
consistent with the bifurcation structure and our inzuition.

5 Discussion

We have formulated a minimal phase model for endogenous parabolic burst-
ing. The model is analyzed by deriving a reduced set of equations for the slow
variables, using quasi steady-state assumptions and formal averaging {(over
fast spiking). This reduced system is used to estimate parameter values where
the full model exhibits bursting, steady-states. continuous and modulated
spiking. We find conditions for the bistability of solutions between continuous
spiking and bursting. and find that the relative speed of activation (¢,) and
inactivation (&, ) of the slow variables strongly influences the burst pattern as
well as other dynamics.

When the speed of inactivation is slower than activation burst solutions
ride on underlying slow oscillations, characteristic of a bursting pacemaker
neuron such as the R-15 cell of Aplysia. The slow wave emerges without spikes
for parameter valucs which destabilize (Hopf) the resting state in the silent
region. When activation is slower there is no slow wave (compare Fig. 7c with
Fig. 10b or c¢). Furthermore, the bifurcation structures are different (cp.,
Figs. 8 and 9). When &, < &,, complicated solutions, possibly chaotic, can exist
over a wide range of parameter values. Our numerical studies indicate that
burst solutions become less organized and irregular as the cusp is approached.
Terman {317 has addresscd some of these question using geometric singular
perturbation theory, but for a different model. When ¢, < &, the parameter
range for unusual burst solutions is small. but the possibility of modulated
continuous spiking arises and bistability occurs in the vicinity of the Hopfl
point where the steady CS solution destabilizes.

Our slow phase plane analysis reveals the geometrical features that under-
lie the emergence via Hopf bifurcation of slow wave and modulated continu-
ous spiking solutions. In the first case, onset of PSW (Fig. 7b and Fig. 8), the
activation nullcline (v vs. x) in the silent region is non-monotonic. This
behavior sets up the possibility for Hopf bifurcation when activation is fast
and the steady stale moves by parameter across the nullcline’s minimum. In
the second case, the inactivation nullcline (x vs y) in the active region is
non-monotonic. Correspondingly. when inactivation is fast. a steady state just
inside the y-nullcline minimum can change stability via Hopf bifurcation as
parameters are varied. These are instances of a general property in two-variable
relaxation systems {think of FitzHugh-Nagumo as an example) with the fast
variable having a cubic-likc nullcline: Hopf bifurcation and onset of oscillations
occurs when a steady state moves onto or off of the fast variable nullcline’s
middle branch. The non-monotone features depend on parameter values in our
model, and for some cases (not shown here) these features are not present.
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The phase burster exhibits dynamics remarkably similar to more complex
models of parabolic bursting. We do not expect the dynamics to be i1dentical
for two reasons: first, we have simplified the fast system using a simple phase
representation and second. the slow equations can vary from model to model.
The phase burster's slow equations also have a very simple form.

The phase model may be viewed as a canonical description of more
complex models, in much the same way the FitzHugh-Nagumo [11] equa-
tions serve in studying features of the Hodgkin-Huxley system. To demon-
strate this, consider Rinzel and Lee’s model for a parabolic burst mechanism
based on calcium-inactivation of a calcium conductance, which they call the
Ca-Ca model [26]. The equations for the fast dynamics of the Cu-Ca model
have a Hodgkin-Huxley like form:

CmV = —y-‘\'a'ni(l’}h(v -_ V_\",) - g—xn"'(V - l’x) - .(jL(V - VL)

— Jea-ca X HICaV — Vi) = gi. otV — V) (33)
h=i(he — by, (34)
n=s(ng —n)t, (35)

Here, V' denotes membrane potential (mV); h is a V-dependent, HH-like
inactivation variable for Na-channels, and n is the activation of HH
K-Channels. H(Ca) is a nonlincar inactivation function which responds
instantaneously to Ca. The slow dynamics is governed by

X=[X. (V)= X1y (36)
Ca = p[Ca,(V,X,Ca)— Ca) (37)

where X is an activation variable which controls the inward calcium conduc-
tance represented as Je, - c. X H(Ca), and Ca is the slowly changing concer:ira-
tion of cytoplasmic free calcium which acts to depress or inactive the fast spike
generating system (33)-(35). In comparison to the phase burster model (1)-(3),
X is analogous to x and Ca is analogous to y; with the important difference
that Ca, is a function of the two slow variables in addition to a fast vanable,
whereas v, is a function of the fast variable 0 only. The parameters and
nonlinear functions for (33)-(37) are listed in the Appendix. A more detailed
description of the Ca-Ca model can be found in Rinzel and Lee {26]. Canavier
et al. [5] have also formulated a biophysical Ca-Ca model.

In Fig. 12a burst solution to (33)-(37) is projected into the plane Ca — X of
slow variables. We have labelled the axes in reverse with inactivation horizon-
tal and activation vertical; the reason is so that Fig. 12 can be compared
directly to Rinzel and Lee’s Fig. 8 (which is computed with the same para-
meter values as our Fig. 12). New in our figure is the inclusion of the averaged -
X and Ca-nullclines. We computed these nullclines using the numerical
procedure described recently by Smolen et al. [ 297, which uses the bifurcation
code AUTO to find nullclines for the slow variables when the fast variables
are periodic by averaging over the fast oscillations. This procedure is time
consuming and of course not necessary for the phase burster, since averaged
equations are derived in closed form.
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4
time(s)

Fig. 12. Burst solution of
Rinzel and Lee's Ca-Ca
model [26] follows the X,,-
sullcline in the active phase.
Projection of solutions to
33137 onto plane Ca — X
of slow variables. Curve HC
corresponds to degencrate
Jomoclinic orbit. As in Fig.
3of[26L. p=10"*and

7, = 235. Other parameter
values are given in the Ap-
pendix. The nullclines from
the active and silent regions
meet to form a cusp at C

A prominent feature in Fig. 12 is the cusp formed where the X-nullcline
from the silent region and its averaged counterpart mect along HC. The
Ca-nullcline also has a cusp on HC, but is small and difficult to see in Fig. {2.
Our phase plane analysis of the phase burster model suggested that such
cusp-like structure should occur in the Ca-Ca model.

Finally. we can deduce that the bifurcation structure of the Ca-Ca model is’
qualitatively similar 10 the supercritical structure in Fig. 8; i.e., stable steady
states give rise 10 slow oscillations followed by bursting and continuous
spiking as 1/K, increases. The parameter K, controls the Ca-nullcline, and as
Rinzel and Lee point out. increasing K, rotates the nullcline clockwise.
Thercfore, increasing 1/K drives the equilibrium peint up through the cusp
and over onto the oscillatory side, where the equilibrium point becomes
stable; this is the continuous spiking case. The reciprocal of K, is proportional
to the removal rate of calcium; a low removal rate corresponds to a stable
steady state, a high rate continuous spiking. In this sense 1, K, is analogous to
our net stimulus parameter /. In Fig. 12, p < 1;7,. which is consistent with
inactivation (¢,) being slower than activation (¢,) in the phase model.
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Appendix: parameters and functions for the Ca-Ca model

For V:
C, =1 pF/cm?
Vee=30mV, Ve =140mV, Vi=-"3mV, V, = —-40mV,
gne = 40mS/em?, gy =03mS'em®.  §, = 0.003 mS/cm?
Gca-ca = 0.009 mS/cm?, Jx.0 = 0015 mS cm?
% . 2 82
moy= ey BTy B8
Il V) + BtV 105 105
where
0.1{50 -V ‘ e b
1'"(V)=:,15"—£"I-W:—)—l" (‘m(V)=4ca.,5 ‘)IS‘
For h:
Vv 1
’U(V)='_:1“‘“_')"T- Th(l/)=—T_T, .= 1/125,
2, (V) + By (V) (V1 + pv)
where
(V) = 00728730 (V) = e
For i: .
12 1
'l-r.(V)'-‘—';M—:—, V)",
1,(V)+/f,,“/) In”"*'ﬁn(v)
where

00155 -V i .
z,(V)=;'_§5_('WT:-)T, ﬂ.(V)=0.123£"45 V180
For X and Ca:
1

—0.!5(50+l',+ 1 N

XJ.(V)=0

Cal(V. X, Ca) = KCXH(Ca)(VC, -_— V) N

H(Ca) = ———r,
(Ca) 14+2Ca
where
Ke=2343x10"2mV~!,
p=10"* ms™' and txy=235ms
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