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ABSTRACT

Minimal models of the electro-chemical activity in nerve,
muscle and secretory cells often require differential equa-
tion systems that have more than two time acales. An
example is 8 phase model for neuronal parabolic burst-
ing, which haa three time scales. We review this model
and show how the method of averaging is used to analyze
this system.

1. INTRODUCTION

Nerve cells have highly nonlinear electrical proper-
ties. When a nerve cell is at its electro-chemical equilib-
rium (rest} there is & steady electrical potential differ-
ence acroes the membrane of the cell. In response to an
external current stimulua the cell’s membrane potential
will (1} return to rest if the stimulus is subthreshold or;
(2) generate a large amplitude spike called an action pe-
tential if the stimulus is above threshold. If a sustained
current stimulus is applied that is suprathreshold, a train
of repetitive actions potentials, sometimes in the form of
relaxation oacillations, are observed. This periodic be-
havior 8 called continuous or repetitive spiking.

The most famous mathematical model of excitabil-
ity in nerve cells, that is based on experiment, is the
Hodgkin-Huxley (1952) system of differential equations.
This landmark work won Hodgkin and Huxley the Nobel
Prize for Physiology and Medicine in 1963. They mea-
sured and modeled the dynamics of ionic current flow
across the cellular membrane of the squid axon. Their
theory involved a set of four differential equations with
functions and parameters fitted to data obtained from
voltage-clamp experiments. (see Hille 1992 for elements
of the Hodgkin-Huxley work and membrane biophysics. )

In 1976 Neher and Sakmann developed the patch-
clamp technique to record current flow through a single

ion channel, for which they too won the Nobel prize (see
Hille 1992). Since the discovery of the patch-clamp, ionic
current flows have been measured in a variety of cells al-
lowing for the development of new mathematical models.
Although the methods for collecting data have changed,
the Hodgkin-Huxley theoretical framework continues to
guide the formulation of new mathematical models.

Hodgkin-Huxley like models have the following general
form (Rinzel and Ermentrout 1989):

O =l w10 ()
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where v(t) is the membrane potential, ' is its capac-
itance, and [;,, i8 the sum of all the ionic currents
through the membrane. I{f) is an external current and,
for k = 1,...,n , Wy are state variables that model the
membrane channel gating processes; oy, are temperature
dependent parameters and 73, time constants.

Inherent in Hodgkin-Huxley like systems ate equations
with multiple time scales. A simple example is the well
known FitzHugh-Nagumo model (1960, 1962); s sim-
plified two variable lumped caricature of the Hodgkin-
Huxley system. The FitzHugh-Nagumo equations can
be viewed as a minimal model for studying relaxation oe-
cillations, a phenomena that requires at least two time
scales. Most models have more than two time scales
and the phenomena can be more complicated. Bursting,
which we discuss below, is an example.

In general, minimal or canonical models of Hodgkin-
Huxley like systems have a time hierarchical structure of
the form
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with 2y € R™, T ny = n and ex € &xyy, for k =
1,...,m. Systems of this kind, like their more complex
counterparts, can be studied using quasi-steady state ap-
proximations, muiti-scale and averaging methods.

Canonical systems have the added advantage that they
are often anaiytically accessible. In the next section we
describe bursting and in Section 3 we examine a minimal
phase model, formulated by Baer, Rinzel and Carrillo
(1995), which captures many dynamical features of more
complex models for autonomous parabolic bursting. We
then review how the method of averaging is employed to
analyze the phase model.

2, BursTING OSCILLATIONS

' Besides repetitive apiking, some neurons are capable of
8 more complex pattern of nonlinear vecillations called
bursting. Bursting is a periodic alternation between a
phase of high frequency oscillations {action potentials)
and a quisscent phase of slowly changing membrane po-
tential {see Fig. 1). In parabolic bursting the frequency
is lower at the beginning and the end of the active phase.
In autonomous bursting the fast spike generating sys-
tem is coupled to one or more subsystems which evolve
on a slower time acale. There is a two-way interaction
between the fast and siow subsystems; the fast variables
play a crucial role in the slow dynamics. The most widely
studied autonomous parabolic bursting neuron is the R-
15 cell of the abdominal ganglion of the mollusk Aplysia.
Figure 1 shows a typical parabolic bursting oscillations
pattern; these were calculated (using v = sin(#)) with
the phase-burster model that it is described in section 3.

Figure 1. Parabolic bursting

Bursting in biclogical membranes has been studied ex-
perimentally by many authors and various theoretical
models have been formulated. {e.g.: Baer, Rinzel and
Carrillo 1995; Av-Roun, Parnas and Segel 1993; Smolen
and Keizer 1992; Chay and Cook 1988; Plant and Kim
1976 and references there in). Before analyzing bursting
models it is important to identify the fast and slow vari-
ables. In many biophysical models of bursting there are
many equations, so it is often difficilt to distinguish the
fest from the slow subsystems {see Rinzel and Lee 1987

and more recently Butera, Clark and Byrne 1996). Once
the fast/slow dynamics are resolved the system can be
dissected using singular perturbation methods and for-
mally classified. Following this approach, in 1987 Ringzel
classified a variely of bursting mechanisma. More re-
cently, Bertram, Butte and Sherman (1995} have shown
how the various formal classifications of bursting can be
extracted from a apecific model, and in the procese they
found some hybrid classifications.

3. PHase MODEL FOR AUTONOMOUS PARABOLIC
BURSTING :

Biophysical models of autonomeous parabolic bursting
require at least four state variables interacting: two vari-
ables for the spike generating mechanism and another
two for the coupled slow oscillation. However, it is pos-
sible to model parabolic bursting with just three state
variables if phase modeling is used to simplify the dy-
namics of the fast subsystem. This approach captures
the timing of the burst oscillations but at a cost of losing
information about the amplitude and shape of individ-
ual actions potentials. A three dimensional autonomous
phase model for parabolic bursting, recently developed
by Baer, Rinze! and Cacrillo (1995) is governed by the
following system of differential equations

f(6) + Alz,p,1) @
£e[Ten{f) — z]

= &ylys(8) — )

In this model the variable § represents the phase of the
fast oscillations (v varies proportional to sin #(t)); x and
¢ represent two competing state variables that operate
on a slower time scale determined by the time constants
Ez,&y € 1. The slow subsystem affects the fast one
through the activation function A(z,y}. The activation
function is monotonically increasing with  and decreas-
ing with y; therefore z and y constitute excitatory and
inhibitory variables, respectively. I represents an exter-
nal stimulus,
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Figure 2. Ring dynamics of the fast subsystem
with f(0) = 1 — cos(8).
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All the functions of & are 27-periodic and therefore the
fast subsystem dynamics occurs on a ring {Fig. 2). The
functions T, Yoo &re assumed to be increesing in the
interval —x /2 < @ < 0, and the image of the function A
contains an interval centered in fr, = min {f{8)}.

When 4 > —fm the angle # increases through mul-
tiples of 21, causing continuous spiking. At 4 = —fp,,
the fast system undergoes a homoclinic bifurcation that
coincides with a saddle node bifurcation. This bifur-
cation destroys the periodic orbit responsible for the
continuous spiking behavior and creates an unstable
node and a saddle in the fast system that persists for
A < —f, (Fig.2). Correspondingly, as A varies through
values less than —f,,,, the two equilibria of the fast sys-
tgm generate respectively, 2-dimensional stable and un-
ateble quasi-steady state manifolds M* and M™, imn-
mersed in the 3-dimensional state space of the full sys-
tem. Manifolds M* and M™ intersect smoothly forming
a 3-dimensional curve that projects onto the plane of
the slow variables z,y; the curve is given by equation
A(z,y,1) = —fin. This plane curve constitutes a bound-
ary between a “silent” and an “oscillatory region,” § and
O. 1t is called the homockinic doundary (HB), for when
the (z,y) trajectory crosses it, the fast system {whose
phese variable is #) undergoes a homoclinic bifurcation;
when (z,4) € O, the potential (v = sin8) oscillates
rapidly, when (z,4) € & the angle & tracks the slow
manifold M* and hence the potential slowly varies.

Let 8,(z,¥) be the function that generates the mani-
fold M*, for (z,1) & S close to the homoclinic bound-
ary. The solution (8(t), (L}, ¥(t)) of the full system (E),
which projects into the silent region (S), rapidly ap-
proaches M*. This is the quiescent phese of the burst
oscillation. The solution slowly varies on M* for as
long as the projected trajectory remains in & Quasi-
steady state manifold theory {Hoppensteadt 1966) ap-
proximates the slow dynamics, if €¢,£4 < 1, by the dif-
ferential equations

dz
ry = E:Izm(al(zvy))_zl 3
Y = abeliln) -3l

However, if the behaviot of the solution

{8(t), =(t),y(£)) is such thet its projection (z(£),1(t))
passes through the HB and into the oscillatory region
O , then the quasi-steady state approximation breaks
down. In this case the averaging method (Carrillo 1984,
Verlhust and Sanders 1985) appraximates the slow dy-
uamics, if €;,&, <€ 1, by the equations

0

5:[500 (A(zvv» - 3] (4)

eylion (Alz9)) -9
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According to this scheme of analysis, the periodic non-
linear patterns of osciliations (bursting) will eccur when
the slow (reduced) system given by equations (3) - (4)
has a closed orbit that crosses HB.

The singular perturbation approximation, the reduced
system {3)—(4), is anelytically tractable if the functions
in the model are trigonometric. Figure 3 is a bifurca-
tion diagram of the system for the functions: f(8) =
1 — cos{f); zo(#) = sin(6 — 1.3); ¥oo(f) = sin(f — 0.4);
A(z,y,I) = tanh(2z — 5y + I} and the parameters values
ey = 0.01,¢, = 0.0012. On the horizontal axis appears
the external stimulus I , which is chosen as the bifur-
cation parameter. On the vertical axis maximum and
minimum values of the activation function A (for the
reduced system) are plotted for each J.

1.0 4

~1.0
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Figure 3. Bifurcations diagram of the reduced
aystem (3) - (4).

For low values of I, the system (3}—{4) converges to
a stable steady state (555} in the silent region and the
full system (2} does the same. Close to f = —4.42, there
is an Andronov- Hopf bifurcation to periodic solutions;
the maximum and minimum values of A are plotted (see
b). When the full system tracks this orbit, a slow pe-
riodic oecillation in # is observed. This corresponds to
a pure slow wave oscillation of the membrane potential
that looks like a bursting pattern without spikes. In this
parameter range, since ¢y < €5, the pure slow wave is



& relaxation oecillation. As I increeses, the amplitude
of this oscillation grows until it reaches HB, which for
this example is the line A = 0. For greeter values of
I (see c}, the maximun and minimun values of A have
oppoeite signa, this makes the full system to akernate
between periods of high frequency ocecillations and pe-
riods of quiescence (Fig. 1). The dashed curves in the
diagram plot the fraction of the period of the bursting
solution that is spent in the active phase (same scale
used for A}. In the upper range of I the activation func-
tion A takes values larger than zero and consequently
the full system displays continuous spiking {CS); the re-
duced system converges to a stable steady state in ©.
Although the phase model constitutes a simpie mathe-
matical representation of parabolic bursting, the results
of our analysis agree qualitatively with the results of
simulations that have been carried out for higher dimen-
sional models of Aplysia. The phase model captures the
fundamental dynamical structure of parabolic bursting.
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