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ABSTRACT

Bursting s characterized by alternations betwoen phacs of rapid spiking am} slow-
Iy varying potential. A simple threp-variable phase model is consldered to stindy
endogenous parabolic bursting, & class of burst wctivily obseyvod experimentally
in cxcitable neuronal membrane. Raphd spiking i represented canonically by a
one-variable phase equation thst is coupled bi-directionally to & Lwo-variabic skw
systemn, The model s analyzed using quasi steady-state asumptions and fonnnd
averaging. A reduced system b derived Lo explore where the system exhibits bt -
ing, stendy-states, continuous and modulsted spiking. [t is lound Lthat the relative
spred of sctivation and inactivation of the slow varlables strongly infloences the
Lurst pattern as well as other dynamica, and there exiats bistabllity of solullons
betwoen continuous spiking and bursting. Althougl the phase model ks shinple, it
captures dynamical leatures of more complex biophysical modets.

1. Introduction

Some cells known as bursting pacemakers fire with a pattern that alleruntes
between an active phase of rapid cscillations and a silent phasc of slowly chinnging
membrane potential. Bursting oscillations have been observed in neuronal enscn-
Lles and in isolated neurons [11). Bursting requires at least two ditfercit time scales,
one on the scale of [ast oscillations {1 to 10 milliseconds) and the other on the acale
of slow modulations {10! to 10 seconds). An endogenous (or autonomous) burster
is one in which the slow and {ast systems are coupled bi-dircctionnily; the fast
drives the slow and the slow drives the fast. Mathematical models of endogenous
bursting mechanisms are often modifications of the Hodgkin-Huxley mndel {12] with
additional variables to account for the slowly modulated activity [18,21,14,19].

Figure 1 shows two different types of endogenous burst patterns: a square-
wave burster (Fig. 1a) and a parabolic burster {Fig. 1b). The square-wnve burster
shows a relaxation-like character, The mean membrane polentlal juinps discontin-
uously when spiking begins and the spike frequency decrcascs at the end of the
active phase. This pattern is characteristic of electrical bursting activity observed
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Figure 1. Two kinds of burst patterns. (a) A square-wave burster computed using the Morris

and Locar model {from Rinzel and Ermentrout {20]) (b) A parabolic burst pattern generated from

the phase-burster model {1)-{3) with parameter values ¢, = 0.0060, ¢, = 0.0015, 0 = 2, b = 5,
=105 p; = -0}, p,=—-03, and V = sind(1).

in insulin-secreting S-cells of the isket of Langerhans in the pancreas [1]. There have
been numerous Hodgkin-Huxley-type models explaring the biophysical mechanisins
underlying bursting in S-cells and recently singular perturbation methods have been
applicd to this class of madels {23,17,22]. The parabolic burster (Fig. 1b) rides on a
smooth sinusoidal-like slow wave. The burst is called parabolic because the instan-
tancous spike frequency is low at both the beginning and end of an active phnse.
The R-15 neuron in the abdomiual ganglion of Aplysia is an example of a parabolic
burster and has heen modeled by Plant [18] and studied qualitatively and Iteri-
cally by othiers [21,4,5]. Parabolic bursting depends on there being at least two slow
variables {for opposing effects: to promote or suppress rapid spike gencration). In
contrast, squarc-wave bursters nced only one slow variable but with the requirainen-
t that the fast variable subsystem cxhibit bistability {20]. Recently, Baer, Rinzel
and Carrillo [2] developed a simplified three-variable phase mode! for endogenous
parabolic bursting, namely

6 = 1—cosl+ Alz,p) (1)
T o= & [Tcff) ~ 7] (2)
§ = & luxl(®) - ul (3)

where ¢,, €, arc parameters representing speed of activation and inactivation {usu-
ully of order less that one), and oo, Yoo AIE 2x-periodic functions of # that strictly
increase for —#f2 < # < 0. Here,
Zoo(8) = sinlp: + &) (4)
Yool ) = sin(p, + 0) {5}
whete p, and p, are constants. Sinusoids are chosen to keep the model simple and
analytic, but other forms are possible. The slow subsysten, driven by 8, feeds

back to Lhe fast subsystem to provide bi-directional coupling through the activation
function A(z, ¥) defined by

A(z,y) = tanh(az — by + 1), ()
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Figure 2. The fsst subsystem is governed by ring dynamics. The cupves plot the right hand side of
Eq. (1} over two periods (4x). Tle rings represent the dynamics of # for the three cases A positive,
zero, ond negotive. Recall that A is coupled bi-directionnlly to ¢ through x aml y. (a) When
Alz.p) > 0, dofdt is slways positive. The phase # increnses through multiples of 2% on the ring,
cotrespording to fast oscillations. (b) The case A{z, ) = 0 i analogous Lo & homoclinic bifurcation
boundary in Plant’s model. (¢} When Az, ) <0, the phase & has two singular points every 2x, oiic
stable and the other unstable; @ stowly tracks the stabile one {moduli 2n) s = niel y slowly chnnge.

where a > 0, b > 0. The nct externally applied stinulus I i3 the primary control
variable. Dursting occurs when the slow systein Eqs. (2)-(3) sweeps A(z,y) back
and forth across A = 0. When —1 < A < 0 (silent region), @ is atbracted Lo a slowly
varying steady-state f,. When 0 < A < 1 (active region}, Eq. (1) destabilizes and ¢
respectively increases with time scale O(1) through multiples of 2x, corresponding
to repetitive spiking. As A decreases townsd 0, the cycle time for  hecomes infinite.
The burst patiern shown in Fig. 1b is computed with Eqs. (1)-(6), using sind to
represent the membrane potential.

The fast system is characterized using ring dynamics (sce Fig. 2) [8]. Dursting
oscillations oecur when the slow variables x and g cause the activation function
Alz,y) to sweep back and forth across A = 0. When A > 0 the phase angle ¢ on
the ring (see Fig. 2a) increases through multiples of 2x, corresponding to repetitive
spiking. When A = 0, saddle nodes exist at multiples of 27 in Eq. (1) (sce Fig. 2b),
and for A < 0 there are two singular points for each umltiple of 2r; a stable node
and a saddle node (Fig. 2¢). When A < 0, 8 tracks a slowly varying stable manifold
given by 8,(z,y). As for this ring model, the detailed models Linve an invariant
circle in phase space; as previously recognized for parabelic bursters, {21,8] burst
trajectories pass through & SNIC (saddle node on an invariant circle) bifurcation
both at the beginning and end of the active phase.

This paper is a selective survey of a longer paper by Bacr, Rinzel and Carrillo {2],
with the diffierence here being a stronger emphasis on the model’s global bifurcation
structure. In Section 2 the method of averaging is used to reduce the full imadel to
an analytically accessible set of differential equations on the time scale of the slow
oscillations. In Section 3 bifurcation diagram. for the reduced system ave computed.



From the bifurcation steucture of the reduced system conditions are identified for
histable solutions, modulated spiking, and more complex dynamics where formal
averaging breaks down. Section 4 is discussion.

2. The Reduced System

In this section the dynamics of Eqs. (1)-(3) are approximated by a reduced
system of differential equations that exploit disparitics between the fast and slow
subsystems,

If A <0, solutions to Eqs. (1)-(3) rapidly approach the manifold

8.(x.y) = — arccos(1 + A(z,y)), (M

at least to leading order in ¢, and ¢, [13]. The function 8,(x, y) constitutes a stable
two dimensional slow manifold of the system [24). The slow trajectory (z,y) in the
silent region is then given by the quasistatic approximation

dz

d_f = £ [Im(ﬂu(InU)) -=I (8)
Y e G alles) - 3l o)

For A > 0, the slow dynamics in the oscillatory region, derived from formal
averaging, is governed by

B o o Pl AZars o)) — 2] (19)
Blr -y Gonl Al ¥an)) — Bk (11)

where,
ZulA) = = Zal) 4 (12)

T(A) l-cosf@+ A

= [(A-l-l)— JA+1 - 1] sinp, (13)

1 yeold)
FulA) = ml TTemd i {14)

= [(A +1)- \f(zl +1)2 - l] sin p,. (15}

llere T is the slowly varying period, found by integrating (1) from ¢ = 0 to 2x,
while hollling A fixed:
n d8
jn l—~cosl+ A

2x

- JAary-n (16}

4
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Figure 3. Difurcation structure of the phiase burster for ¢, < ¢, computed fron tho reducl ayste:
Eqs. {8)-(9) and {10)-{11); ¢, = 0.001, ty =00, a=2b=5 p, =13 p = 04, The tine
courscs kor values of I labelod (a-d) are displayed in the pancis.

Together, the quasi-static (8)-(8) and averaged equations {10)-(11), constitute the

reduced system for the phase burster {1)-(3). Jis solutions are continuous mwl
dillercntiable for A # 0. As A — 0 the component systems match asymptotically
(compare Eqs. (13)-(15) for A = 0 with Ecp. (4)-(5) for & = D).

The reduced system can be analyzed in the phase plane since ils constituent
sulsystems are ench sccond-order {2). It has dymvmics similar Lo other Lwo wariabile
models of excitability, such as the FitzHuglh-Nagumo [10} and Morris-Leear [16]
equations; e.g., super and suberitical Hopl hifurcations, sadille nodes, nud intervals
of repetitive activity. Purthermore, when ¢, < €, or vice versa, U raduced system
has singular behavior and relaxation oscillator propertics [15,9]. In the next section
the dynanics of the phasc burster is analyzed row Lhe bifurcation structure of Lhe
reduced system.

3. Bifurcation Structure of the Reduced System

The reduced system is now emploved to determmine paramcter values (corre-
sponding to the full model) that Lracket lower and upper thresholds for bursting,
stcady states, continuous and modulated spiking. Also, conditions for bistability of
solutions between continious spiking and bursting are found.

The bifurcation structure of the reduced system, for ¢, € ¢,, is shown in Fig. 3.
The net stimulus [ is chosen as the primary control parameter. The valuces of
indicated by (n-d}) correspond to the trajectorics in I'ig. 3{a~d). At the lower range
of the net stimulus {7 = ~6), the activation function is in the silent region (A < 0).
Solution trajectorics converge to a stable steady state (SSS) as shown in {a). There
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Figure 4. Bifurcation structure of the phase burster for ¢, & ¢, computed from the reduced system.
Parsmnctct values the same as o Fig. 3, cxcept ¢, = 0.002 and ¢, = 0.008. The lime coursar for
wnlues of [ denoted by (a-d} are displayed in the panels.

is & (supercritical) Hopf bifurcation to periodic solutions at 1B (f = —4.42). Hcre,
the activation function is negative, so the full system exhibits pure slow waves PSW
at (b}. The periodic branch is near vertical due to the disparate time scales of Lhe
slow systein. Conscquently, for I just to the right of HB the slow waves have
small amplitude relaxation oscillator propertics, such as the sawtooth wave pattern
analyzed by Baer and Erneux [3]. For larger values of I at {c), the activation
function continucs to oscillate but sweeps positive for a fraction of its period, which
corresponds to bursting in the full madel. The dashed curve B is the fraction of
time that the burst solution spends in the active phase (use same scalc as A4); time
spent in the active phase increases as 1 increases.

Over the interval —2 < I < 0 the activation function spends much of its Lime
in the vicinity of A = 0, and the leading order estimale given by averaging breaks
down {In cases where the slow trajectory remains near a SNIC curve, like 4 = 0,
one could apply the analytic method developed by Ermentrout {7] to approximate
the slow trajectory.) Numerical solutions of the full system in this domain have
complicated dynamics; as / approaches zero (the cusp) bursting and spiking be
come irregular. Hodgkin-Huxley like bursting models exhibit a similar Lransitional
behavior. Finally, for I pogitive, the systemm spikex contimuously CS. The horizontal
dashed line above the CS curve indicates that the system eventually spends all its
time in the active phase (sce (d)).

\When ¢, ¢ ¢, the bifurcation structure is quite different. Instead of a Hopf bi-
furcation from SSS to PSW, Fig. 4 shows that the system apparently gocs directly
from SSS to B through a homoclinic bifurcation. The dashed curve labeled UCS is
an unstable steady-state branch, which corresponds to a branch of unstable contin-
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Figure 5. Bistable solutlons for €, 4 ¢, Smne paramcters an in Fig. 4 (§ = 0,24}, bt bl soluthons
are eoppited directly (roan the Tull model {(13-{3). (&) Top: in recponse Lo o sl unplitode
perturlation from stabie conthenx spiking the full sypsem retursa o conths spiking through
frevquency mexbulated kpiking, although ou Uhis time seale lregieney nnmbitst ks cnnind e resilved
{me &) bekow), The froquency of (ast oscillations [, plotted Below an n Tanction of tine, decayn to
stewdy-siate, {B) In naponse (o a irger periurbation, meddilaied spiking grows (ovwer) antil the
onset of bursting. {c) Unstalibe muclulnted spiking: oxpanded view of the lop time comirse in () bw
£ between 4wl 2500, On this scade frequivney wexdulntion can be obwernsd,

uoits spiking solutions for the full system. At lnrge stimulus values (d) the redueed
svalem has nstable steardy-state, therelore the ull gystem spikes continmously {poan-
ol («1}). Unlike Fig. 3, there is a Hopf bifurcation for A > 0 eather than e A < 0,
Just Lo the right of 1B Ltwo kinds of stablesolutions cooxist: o stable stemly-stnle
apd  Jarge amplitude periodic solution. The stable steady-stale coreesponds 1o
continuous spiking and the stable periodic solution correspoids 1o barsting, siuce
A alternates sign each cyele {see Fig. & a and b, respectively). The bifureation
is subcritical, so the local periodic branch is wislable, and periodic solutions on
this branch correapond to unstable wodulated spiking UMS in Lhe full system (scc
Fig. 5¢). In this bifurcation structure there are no values for [ that give rise Lo
stable slow waves. To obtain stable moclulated spiking would require a supercritical
Hopf bifurention for A > 0. A local bifurcation analysis (ot provided here) of the
averaged subsystem (10)-(11) demonstrates that the bifurcation is always subcrit-
ical. It is intercsting to note that cocxistence of Lursting and continuons spiking
bebinvior s been found in a parabolic burster model by Canawvier ot al [4]-

The burst solutions at (b)), in Fig. 4, has a silent phase over twico as long ns
1he burst solution at (¢). The Jonger silent phase at (b) is duc to the fact that 7
is closer to a homoclinic point of bilureation. This also explains why during the
silent phase the time course appears flat, This [eature, cotmmon to all panels in
Fig. 4, is not usually nssociated with parabolic burst activity; typically, trajectorics

7



characteristically ride on sinusoidal-like slow waves. Finally, for negative values of
I, the system settles into a steady state (a).

4. Discussion

The phase burster exhibits dynamics remarkably similar to more complex models
of parabolic bursting. The dynamics should not be identical for two reasons: first,
the simple phase representation greatly simplifies the fast subsystem and second, the
slow equations can vary from model to model. The phase burster’s slow equations
also have a very simple forin.

The phase model may be viewed as a canonical description of more complex
models, in much the same way the FitzHugh-Nagumo equations serve in studying
features of the Hodgkin-Huxley system. To demonstrate this, consider Rinzel and
Lee's madel for a parabolic burst mechanism based on calcium-inactivation of a
calcium conductance, which they call the Ca-Ca model [21). The equations for the
fast dynamics of the Ca-Ca model have a Hodgkin-Huxley like form:

CuV = =Gne ma(VYA(V = Vi) —gxn* (V - Vi) - g (V- V)

—fce-ceX H{Ca) (V - Veu) - gxalV ~ Vi) (17)
h = Xk —h)/n (18)
A= X (ne —n)/T (19)

Here, V' denotes membrane potential {mV); A is a V-dependent, HH-like inactiva-
tion variable for Na-channels, and n is the activation of HH K-Channels. #(Ca) is
a nonlinear inactivation function which responds instantaneously to Ca. The slow
dynamics is governed by

X = [Xu(V)—X])frx (20}
Ca = p[Can(V,X,Ca) - Cal (21)

where X is an activation variable which controls the inward calcium conductance
represented as Jeoa,-caX H{Ce), and Ca is the slowly changing concentration of
cytoplasmic free calcium which acts to depress or inactivate the fast spike generating
system (17)-(19). In comparison to the phase burster model (1)-(3), X is analogous
to z and Ca is analogous to y; with the important difference that Ca,, is a function
of the two slow variables in addition to a {ast variable, whereas y,, is a function of
the fast variable & only. The parameters and nonlinear functions for {17)}-(21) are
listed in the Appendix of Baer et al [2]. A more detailed description of the Ca-Ca
model can be found in Rinzel and Lee [21]. Canavier et al [5] have-also formulated
a biophysical Ca-Ca model.

In Fig. 6 a burst solution to (17)-(21) is projected into the plane Ca— X of slow
variables. Figure 6 can be compared directly to Rinzel and Lec’s Fig. 8 (which is
computed with the same parameter values as Fig. 6). In this figure the averaged X
and Ca-nullclines are included. These nullclines were computed using a numerical

8
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Figurc 6. Burst solution of the Ca-Ca model follows Lhic X oo-nullchine in the active phose, Projection
of solutions to Eqs. (17)-{21} onto planc Ca — X of slow variables (from Bacr et nl 2]}, The SNIC
curve cotresponds to & homoclinic orbit at a sulhille-node point. () p = 10-% Al 7, = 235 (R
values as Fig. 8 in Rinzel and Lee [21]). The nuliclines from the active and siletit regins meed Lo
form a cusp at C. {b) The trajectory follows even closcr Lo the Nap-tullcline when Ca wich N e
slowed down: p = 10-% and 7, = 5000.

procedure deseribed by Smolen et al [22], which uses the Lifurention code AUTQO
[6) to find nullclines for the slow variables when the fast variables are periodic, by
averaging over the fast oscillations. This procedure is time consuming ad of course
not necessary for the phase burster, since averaged equations can be derived in
closed form., A prominent (eature in Fig. 6 is the cusp formod where the X -unlleline
from the silent region and its averaged counterpart meet along the SNIC curve. The
Ca-nullcline also has a cusp on the SNIC boundary, but it is small and difficult to
sec in Fig. 6. Baer et al [2] have found that the phase burster model has a similar
cusp-like structure in the phase plane.

Finally, the bilurcation structure of the Ca-Ca model is qualitatively similar
1o the supercritical structure in Fig. J; ie., stable steady states give rise to slow
oscillations followed by bursting and continuous spiking as 1/ increases. The
parameter K, controls the Ca-nullcline, and as Riuzel and Lee poinl out, increasing
K. rotates the nullcline clockwise. Therefore, increasing 1 J K. drives the equilibrium
point up through the cusp and over onto the oscillatery side, where the equilibrinm



point becowmes stable; this is the continuous spiking case. The reciprocal of K, is
proportional to the removal rate of calcium; a low removal rate corresponds to a
stable steady state, a high rate continuous spiking. In this sense 1//, is analogous
to our nct stimulits parameter I. In Fig. 6, o < 1/7;, which is consistent with
inactivation {¢,} being slower than activation (e;) in the phase model.
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