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Abstract

The nonlinear lattice equation of the u6 theory is studied by using the technique of generalized coherent states associated to a SU�2�
Lie group. We analyze the discrete nonlinear equation with weak interaction between sites. The existence of saddles and centers is

shown. The qualitative parametric domains which contain kinks, bubbles and plane waves were obtained. The speci®c implications of

saddles and centers to the parametric ®rst- and second-order phase transitions are identi®ed and analyzed. Ó 2000 Elsevier Science

Ltd. All rights reserved.

PACS: 11.27.+d; 11.30.Na; 05.70.Jk

1. Introduction

The many-body quantum systems in an actual situation are so complicated that they usually need a
certain reduction procedure from the quantum description to a classical one. The coherent states (CS) are a
popular class of research techniques used to ®nd good solutions to hard problems in studying many-body
quantum systems. In fact, such a procedure consists in choosing trial functions (i.e. some basis) which can
be used for averaging the quantum Hamiltonian. We should be very careful in performing the choosing of
the trial functions. As common for doing this one can use a search strategy, originally proposed by
Schr�odinger, which was motivated by natural use of inherent symmetries of the system. It often happens
that CSs are most suitable minimizing the uncertainty relation.

The coherent state approach was then developed by Glauber, Klauder and Sudarshan in important
application of quantum optics [1±3]. The extension of these ideas to other phenomena has been treated
extensively by several authors [4±7]. Perelomov [8] proposed a method for constructing generalized co-
herent states (GCS) for Lie groups. The GCS method permits to study quantum systems in the semiclassical
version of the theory since the coherent state manifold can be interpreted as the canonical phase space of
the system.

In spin or ``quasispin'' Hamiltonians studies it is natural to use GCS constructed on the spin operators
of the group SU�2�. Such states for arbitrary values of the spin j are those corresponding to points of
the coset spaces SU�2j� 1�=�SU�2j� 
 U�1��: As is well known, the GCS can be de®ned in a certain
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association to an arbitrary Lie group as following. The set of vectors j wmi � T �gm� j w0i with gm 2 G=P
we call a system of GCS on the group G with a referent vector j w0i and T �gm� being the irreducible
unitary representation of the Lie group. Di�erent vectors (states) will correspond to elements gm that
belong to the factor space M � G=P . It is evident that P is a subgroup of the group G and we denote it as
the stationary group of the state jw0i. Hence, it is enough to take one element of each class to describe
the set of di�erent states. From the geometrical point of view, the group G is treated as ®ber-bundle
space with a base M � G=P and layer P. Then the choosing of gm corresponds to some section of this
®ber-bundle space.

In this paper we will deal with the Lie group G � SU�2�. It is known that the system of GCS constructed
on the SU�2�=U�1� coset space may be written as

jwi � T �g�jw0i � eaS�ÿâSÿ j0i � 1
�
� jwj2

�ÿj
ewS� j0i: �1�

Here Ŝ� � Ŝx � iŜy and Ŝz are the generators for the algebra of the SU 2� � group, w � �a=jaj� tan jaj; a;w are
complex numbers, j0i � jj;ÿji is the ground state and j de®nes the unitary representation of the group
SU�2�. The set of trial functions (1) is seen to have the symmetry of sphere. For j � 1 the corresponding CS
read [15]

jwi � 1

1� jwj2 fj0i �
���
2
p

wj1i � w2j2ig �2�

with jii; i � 0; 1; 2� � being the pure spin states (down, middle and up states as usual). The components of the
classical spin vector,~S � �Sx; Sy ; Sz� � hwjŜjwi and of the quadrupole moment Qij for the GCS in the coset
space SU�2�=U�1� for other values of j are

S� � �Sÿ � 2j
�w

1� jwj2 ; Sz � ÿj
1ÿ jwj2
1� jwj2 ; Qzz �

j2 1ÿ jwj2
� �

� 2jjwj2

1� jwj2
� �2

: �3�

On the other hand, in many branches of theoretical physics the so-called u6-theory is a successful model
to study peculiar properties of nonlinear waves, magnetization, nuclear hydrodynamics and so on (see for
example [9±13]). The nonrelativistic version of this theory is the correct model to describe the envelope's
propagation of the light pulse in dispersive potentials with either a saturable or higher' order refraction
index [14]. The /6-model of complex scalar ®eld also shows a rather rich phase transition picture,
depending on the initial con®guration and on the form of potential [17,18].

By focusing on dynamical behavior we proceed to study a 1D quantum quasispin /6-model obtained
by Masperi et al. [19]. As it is well known a few 1D many-body problems can be exactly solved by utilizing
a powerful Bethe ansatz for example. In this situation, it is di�cult, due to absence of a systematic
method, to obtain some exact results of 1D many-body systems. The system that we will study is not
integrable. However, we will use the GCS to obtain appropriated results concerning to the dynamics of the
model.

We wish to emphasize that in this article we are mainly concerned in using the method of GCS to get
physical information specially by studying the singular points of the simplest dynamical system of this
theory. Several results that in a great manner qualitatively converge with those previous done on this
subject, mainly concerning the parametric ®rst- and second-order phase transition have been obtained. We
have captured in this simple fashion of a ®rst approximation of the lattice equation, valuable information
about the role of bubble and kink solitons in the parametric phase transition. Of course, many quantum
features using this approach were disregarded, instead we get some averaged features that in some sense
resemble the classical behavior.

The paper is organized as follows. In Section 2 we deal with the study of the lattice equations generated
by using the GCS. Section 3 contains several results concerning the behavior of the singular points for two
independent ®elds. The right implication of the obtained bifurcations to the parametric ®rst- and second-
order phase transition is analyzed in Section 4. Conclusions are posed in Section 5.
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2. Lattice equations

The starting point is a lattice version of real ®eld theory with self-interaction in 1� 1 dimension de-
scribed by the quantum Hamiltonian obtained by Masperi and coworkers in [19]:

H �
X

m

0 0 0

0 ÿ e 0

0 0 ÿ j

0B@
1CA

m

8><>: ÿ d

0 1 0

1 0 a

0 a 0

0B@
1CA

m

0 1 0

1 0 a

0 a 0

0B@
1CA

m�1

9>=>;: �4�

where e; j; d are the relevant parameter of the model, a � �e=�jÿ e��1=2
: This lattice version of the /6-

model has a symmetry very similar to that of the spin model with spin value s � 1 with the pure spin states
up, middle and down. This property explicitly depends on the parameter a involved in the quantum
Hamiltonian.

Let us analyze the quantum Hamiltonian (4) via the spin CS (2) constructed on SU�2�=U�1�: First, we
have to evaluate the correlations for SiSj: It is simple to conclude that, since the spin operators at di�erent
lattice site commute, we have for all of them the relation.

hwjŜi
mŜk

m�1jwi � hwjŜi
mjwihwjŜk

m�1jwi;
where jwi � jwimjwim�1:

In order to have the classical counterpart to the discrete quasi-spin model, we average its Hamiltonian
(4), with the help of GCS (2) and get

H �
X

m

ÿjÿ 2ejwmj2

1� wmj j2
� �2

ÿ 2d
wm � �wm

� �
wm�1 � �wm�1

� �
a� wmj j2
� �

a� wm�1

�� ��2� �
1� wmj j2
� �2

1� wm�1

�� ��2� �2
: �5�

Let us now turn to the analysis of the classical lattice equation of motion for the system with Hamil-
tonian (5). As it was shown in [14±16] by applying the technique of GCS to a spin-one (or quasi spin-one,
i.e. a system with three eigenstates) quantum system the classical equations that govern spin dynamics along
with its quadrupole moment were obtained. In doing so the authors used SU�2�=U�1� GCS to derive a
classical Hamiltonian and the functional integral method to obtain the equations which read

iwm

�
� �1� jwmj2�2

oH

owm

; �6�

where H �Pm Hm is the classical lattice Hamiltonian and Hk � hwkjH jwki at a lattice site: The Lagrangian
(at a site) obtained takes the form

L � i�h

1� jwj2 ww
��
ÿ ww

��
ÿH;

where H is the classical Hamiltonian at a lattice site.
These equations describe some averaged rather than complete dynamics for all the quantum ¯uctuations

and some other quantum e�ects were disregarded. The Poisson bracket for two arbitrary functions A and B
that both depend on w and w is

A;Bf gj � i
1� wj j2
� �2

2�hj
oA

ow

oB
ow
ÿ oA

ow
oB

ow

� �
:

Let us now apply these results to the quasispin system. First of all we divide this problem into two parts. It
can be easily observed from the Hamiltonian (4), that the lattice version of the model supports two
interesting cases: a � 1; and a 6� 1: Let us consider these two cases

(a) Case: a � 1 or 2e � j. After substituting the Hamiltonian (5) into Eq. (6), we can obtain the lattice
equation of motion
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ÿ i

2
wm

�
� ÿewm � d�1ÿ w2

m�
wm�1 � wm�1

1� jwm�1j2
(

� wmÿ1 � wmÿ1

1� jwmÿ1j2
)
;

which in the small amplitude region is transformed to:

ÿ i

2
wm

�
� �ÿ eÿ dwm wm�1

ÿ � wmÿ1 � c:c:
��

wm � d wm�1

ÿ �
1
�h
ÿ jwm�1j2

�
� wmÿ1� � 1

�
ÿ jwmÿ1j2

�
� c:c:

i
�7�

The quantum Hamiltonian (4) after substraction of a constant, becomes

H2 � ÿ
X

m

2d Sx
mSx

m�1

ÿ ÿ eSz
m

�
; �8�

where Sz
m and Sx

m are the components of the spin operator S
^

acting at site m. This expression by using
relations (3) can also be written in the stereographic projection as

H2 �
X

m

e
1ÿ jwmj2
1� jwmj2

ÿ 2d
�wm � wm

1� jwmj2
 !

�wm�1 � wm�1

1� jwm�1j2
 !

: �9�

This model was shortly treated in [16] and the solitonic treatment of this version of the model should be
reported elsewhere.

(b) Case: a 6� 1; Eq. (6) yields

iwm

�
� 2wm jÿ e� � � 2ewmjwmj2

1� jwmj2
� � ÿ 2d

a� 1ÿ 2a� �w2
m � 2ÿ a� �jwmj2 ÿ w2

mjwmj2
� �

1� jwmj2
� �

�
wm�1 � c:c:
ÿ �

a� wm�1

�� ��2� �
1� wm�1

�� ��2� �2
�

wmÿ1 � c:c:� � a� wmÿ1j j2
� �

1� wmÿ1j j2
� �2

0B@
1CA: �10�

It is expected that this model will support a rich variety of ground states, for example, kink and bubble
ground states. The complete study of the ground states of this theory is outside the present work. However,
we could predict some representatives of possible ground states by making use of a suitable transformation
of the quasispin Hamiltonian. By observing the unitary transformation that was done in [20], for the
quasispin Hamiltonian (5) it is reasonable to suggest like in the ferromagnetic case, that the ground state
will be close to the one for which [15].

wm � wl with l 6� m:

If so, the values of the ground states are obtained by solving the following algebraic equation:

ÿ 2D a
�
� 1� ÿ 2a�w2

m � 2� ÿ a�jwmj2 ÿ w2
mjwmj2

�
�

wm � wm

ÿ �
a� wmj j2
� �

1� wmj j2
� �2

� wm 1ÿ r� rjwmj2
� �

� 0;

�11�
where we have two relevant positive parameters: r � e=j and D � d=j. One solution of the Eq. (11) is
obvious wm � 0: Other solutions can be obtained by representing wm � z exp ih� � and solving simulta-
neously equations for the real and imaginary part of wm: The real values of the ground states are obtained
only in the case when cos h � 1; then

1ÿ r� rz2 ÿ 4D a� z2� �
1� z2� �2 a

� � 3 1� ÿ a�z2 ÿ z4
� � 0: �12�
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This relation yields an algebraic cubic equation for z2: As is known from algebra we have in this case
various regions in the plane r;D� � where the ground states acquire real values. For example, let us see what
kind of dependence arises between the relevant parameters in a very particular case. Eq. (12) has two
imaginary and one real root if the product of the coe�cients of the terms z4 and z2 is equal to the free
member. For these special ground states, the relation between the parameters r;D� � is

1

�
ÿ r� 12D� 16D

�����������
r

1ÿ r

r �
2

�
ÿ r� 12

r
1ÿ r

ÿ 11

�����������
r

1ÿ r

r �
� r� 4D

r
1ÿ r

� 0:

3. On certain properties of dynamics

The most natural way to predict the behavior of a chain seems to be making use of the ``di�erence''
equation (13) as the governing equation and simulating it numerically as it is correct in the sense of
Hadamard. The problem is that too many computational points will be needed for direct numerical sim-
ulations if one is to model even the smallest system of relevance. As our system is not integrable, then
unfortunately little theory is possible once this property is lost.

To overcome this di�culty we analyze Eq. (10) in the simple fashion of small amplitude version. This
lattice equation can be cast in the form

iwm

�
� 2 k� ÿ e�wm � 2 2e� ÿ k�wm wmj j2 ÿ 2d wm�1

ÿ � wm�1 � wmÿ1 � wmÿ1

�
a2
�
� a 1� ÿ 2a�w2

m

� a 2� ÿ a� wmj j2
�
ÿ 2da 1� ÿ 2a� wm�1

�� ��2 wm�1

ÿh
� wm�1

�� wmÿ1j j2 wmÿ1

ÿ � wmÿ1

�i� 0�w4�: �13�

In the ®rst approximation, for the sake of simplicity, let us consider the small interaction between sites and
consequently neglect terms that are proportional to quadratic value of the intervicinity distances. By for-
getting the mean of the ®eld wm, for a while, let us consider wm � f. Then, in the ®rst approximation one can
see that the equation of motion of the system acquires the form

if
�
� 2 k� ÿ e�f� 2 2e� ÿ k�f fj j2 ÿ 4d f

ÿ � f
�

a2
h
� a 1� ÿ 2a�f2 � 3a 1� ÿ a� fj j2

i
:

By taking the standard form: f � x� iy, one obtains the system of equations

x
� � a1y � a2x2y � a3y3

y
� � b1x� b2y2x� b3x3

�14�

with the following values of the constants:

a1 � 2 1� ÿ r�; a2 � 2 2r� ÿ 1ÿ 8Da 1� ÿ 2a��; a3 � 2 2r� ÿ 1�
b1 � ÿ 2 1

ÿ ÿ rÿ 4Da2
�
; b2 � ÿ2 2r� ÿ 1ÿ 4Da 2� ÿ a��; b3 � ÿ2 2r� ÿ 1ÿ 4Da 4� ÿ 5a��:

A further analysis of the above system of equation (14) is realized in the vicinity of the singular points
x0; y0� � which satisfy the algebraic equations

x0 � �
��������������������������������������

2r� arÿ 2� �
8aD 5aÿ 2a2 ÿ 2� �

s
;

y0 � �
������������������������������������������������������
8a2Dÿ 16a3Dÿ 2rÿ ra� �

8aD 5aÿ 2a2 ÿ 2� �

s
;

�15�

The general outlook of the linearized equation for Eq. (14) along singular points x0; y0� � is the equation

d

dt
n
g

� �
� 2a2x0y0 3a3y2

0 � a2x2
0 � a1

3b3x2
0 � b2y2

0 � b1 2b2x0y0

� �
n
g

� �
:
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Here we considered the linear perturbation to the variables: x � x0 � n; y � y0 � g: It is very easy to verify
that the eigenvalues are obtained resolving this equation:

k2 ÿ 2x0y0 a2� � b2�k� 4a2b2x2
0y2

0

ÿ ÿ 3a3y2
0

ÿ � a2x2
0 � a1

�
3b3x2

0

ÿ � b2y2
0 � b1

�� � 0: �16�
Let us brie¯y recall the general features of the singular points denoting by k1 and k2 the two solutions

of Eq. (16) [21]. If k1 and k2 are both real and negative, then all trajectories approach the origin as
t! �1 and the point x0; y0� � is a stable node. Conversely, if k1 and k2 are real and positive, then all
trajectories move away from x0; y0� � as t!1 and the point is unstable node. Also, if k1 and k2 are real
but k1 is positive and k2 is negative, then the point is a saddle point; the trajectories approach the origin
in the direction of the eigenvector associated to the eigenvalue k2 and moves away in the direction of the
eigenvector associated to the eigenvalue k1: When the roots are pure imaginary then the vector X

represents closed orbit and the singular point is a center. If k1 and k2 are complex with nonzero real part,
then the singular point is a spiral point. When Re k1;2 < 0 then X ! 0 as t! �1 and the singu-
lar point is a stable spiral point, conversely, when Re k1;2 > 0 the singular point is an unstable spiral
point.

Let us check if these statements are ful®lled in our system (14). First, we can ®nd that relations (15)
vanish in the intersection point of the two curves

1� ÿ r� 2r� ÿ 1ÿ 4Da 2� ÿ a�� � 2r� ÿ 1� 4Da� ÿ 1� r�;
1� ÿ r� 2r� ÿ 1ÿ 4Da 4� ÿ 5a�� � 4Da2

ÿ � 1ÿ r
�

2r� ÿ 1ÿ 8D 1� ÿ 2a��:
Second, by using the common analysis on the system (14) that is a smooth map: fi : R�R ! R: We can
found the following set of ®xed points:
1. x � 0; y � 0,
2. x � 0; y � � ���������������ÿa1=a3

p
if ÿ a1=a3 > 0,

3. x � � ���������������ÿb1=b3

p
; y � 0 if ÿ b1=b3 > 0,

4. x and y values that satisfy simultaneously the following two system of equations. e.g. the intersections of
the curves a1 � a2x2 � a3y2 � 0; b1 � b2y2 � b3x2 � 0.
The analysis was done by combining the analytic methods and computer simulations using the INTE-

GRA software developed in the faculty of sciences of the UNAM.

3.1. Linearization near the origin (0; 0)

The eigenvalues of the linear system associated to the origin �0; 0� are � ���������
a1b1

p
: These values are real if

a1b1 P 0; and pure imaginaries otherwise. In the ®rst case the origin is a saddle point. Then, we have

a1b1 � ÿ4 r2
ÿ ÿ 4D� � 2�r� 1

�
:

Now if a1b1 P 0 then r2 ÿ 4D� 2� �r� 16 0: For a1b1 � 0 one has r � 2 D�
���������������
D2 � D

p� �
� 1: The neg-

ative value of the square root we discard since r6 1: Only the positive sign of the square root is possible.
Let us observe the graphics of the function f r� � � r2 ÿ 4D� 2� �r� 1: For the segment
2 Dÿ

���������������
D2 � D

p� �
� 1 < r < 1; the theorem of Hartmann assures that the equilibrium is reached in the

origin and this point is a saddle ®xed point. Then the local behavior of the linearized system is similar to the
original nonlinear dynamical system because we have nonpure imaginary eigenvalues. In the other case
a1b16 0; 0 < r < 2 Dÿ

���������������
D2 � D

p� �
� 1; the computer simulations show us that the origin is a center. We

have here the typical linear oscillations. Then, in general case near the singular point 0; 0� �, for small n and
g the linear oscillations have the dispersion relation

w2

j2
� 4 4Dr
�

ÿ 1� ÿ r�2
�

�17�

This expression is used in the next section to obtain the curve D � 1ÿ r2� �2=4r that reminds us
of (qualitatively) the singular points of ®rst- and second-order phase transition in the parametric space
r;D� �:
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3.2. Equilibriums along the axis y : x � 0, y � � ���������������ÿa1=a3

p
These equilibriums exist if and only if

ÿa1

a3

� rÿ 1

2rÿ 1
> 0: �18�

As rÿ 1 < 0 then relation (18) holds if r < 1=2: It is easy to note that if r! 1=2; then ÿa1=a3 ! 1 and
the equilibrium exists whether 0 < r < 1=2. The linearization around these points has the characteristic
matrix

0 ÿ 2a1
b1a3ÿa1b2

a3
0

� �
with the expression for the eigenvalues k2 � �2a1=a3� b1a3 ÿ a1b2� � � 0: It can be shown that
b1a3 ÿ a1b2� � � 3arÿ 2 1ÿ r� �. In this case the roots are real or pure imaginaries. The real eigenvalues

satisfy r > 1=�1:5a� 1�: Since the eigenvalues k1 > 0 and k2 < 0 we have the typical saddle point. As is
known the saddle point is an unstable singular point for any direction of time. For the other case
r < 1=�1:5a� 1� the singular points are only centers. The equation r � 1=�1:5a� 1� represents in the
parametric space a curve of bifurcation from saddle singular points to centers. We can observe that this
drastic change suggests a transformation of the dynamical property of the system from a nonequilibrium
state to stable or quasi-stable states and vice versa. The computer simulations also indicate us that these
singular points are centers and saddles.

3.3. Equilibriums along the axis x : y � 0, x � � ���������������ÿb1=b3

p
Here the necessary condition for the existence of singular points is ÿb1=b3 > 0; being ÿb1 �

2 rÿ 1� 4a2D� � and b3 � ÿ2 2rÿ 1ÿ 4Da 4ÿ 5a� �� �: To this end, both these expressions should have the
same sign.

As we can see the curve b1 r;D� � � 0 or

D � 1ÿ r� �2
4r

is exactly the same curve of bifurcations between saddles and centers and was reported above in Section 3.1.
The equation b3 � 0 gets the curve

D � 2rÿ 1� � 1ÿ r� �
16

�������������
rÿ r2
p

ÿ 20r

that has a vertical asymptote when r � 3=8. It is easy to check also that the eigenvalues for this case should
support two types of singular points: saddles and centers.

The other possibility when the singular points satisfy the relations x2 6� 0 and y2 6� 0 does not give new
information. For this speci®c case the ®xed points in the plane �x; y� do not have pure real values. Let us
check this statement. First of all, relation (15) transforms to

x0 � � 1

2

����������������������������������������
ar� 2rÿ 2� �

2aD 1ÿ 2a� � aÿ 2� �

s
� � 1

2

���
f
g

s
;

y0 � � 1

2

�������������������������������������������������������������������
ÿ arÿ 2r� 2� 8a2D 1ÿ 2a� �� �

2aD 1ÿ 2a� � aÿ 2� �

s
� � 1

2

���
h
g

s
:

�19�

Second, suppose the denominator of each of the above relations (Eq. (19)) is positive. This implies that the
numerator of x2

0 and that of y2
0 has to be positive too. A simple analysis shows that if g P 0 then

1=2 < a < 2 and for f > 0 one gets a >
���
2
pÿ �1=3

. Making the similar calculations in the second relation, one
gets that if h > 0 then a < 1=2. We have in these case no intersection between the regions of values for the
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parameter a in both numerators. This means that if we have real values (say) for x2
0 6� 0, the values of y2

0 < 0
and vice versa.

Consider now the case when the common denominator has negative sign. In this case the line of rea-
soning is similar and there were not encountered any intersections between the regions of validity of the
parameter a in both numerators. This means that at the same time, simultaneously, we are unable to have
positive values for the both point x2

0; y
2
0 , if one of them is ®xed. Then, we disregard these possibilities.

Concluding, the points of equilibriums are only those that we have reported above disregarding the values
x2 6� 0 and y2 6� 0.

4. Bifurcations and phase transitions

As is well known bifurcation is a change of topological structure of partitioning of the phase space of a
dynamical systems into trajectories which is caused by small variation of system's parameters. We have the
parametric space r;D� � divided into six regions (see Fig. 1). The phase portrait obtained with the help of
computer simulations shows us the following pictures. In regions I±III the origin is a saddle and in the
regions IV±VI it is a center. In region I we have two centers in the axis x and one saddle at the origin (see
Fig. 2). In region II there are two centers in the axis x, two in the axis y and one saddle at the origin (Fig. 3).
In region III we have one saddle at the origin and two centers in the axis y (Fig. 4). In region IV we have
centers in the axis y and at the origin too and there are saddles in the axis x. It is easy to note that saddles
are connected by their separatrices (Fig. 5). In region V one has centers in the axis y and at the origin too
(Fig. 6) and in region VI the only ®xed point is the origin and it is a center (Fig. 7).

According to the computer simulations the bifurcations are as following. If one goes from region I to II,
one ®nds two centers in the axis y that are coming from the in®nity �1 and tends to the origin in ac-
cordance with the displacement of the point �r;D� that turn on away from the line r � 1=2: From region II
to III the singular points along the axis x are departing away from each other tending to �1 and disap-
pearing. From the region III to IV the origin changes its form from saddle to a center point. From region
IV to V the points of the saddles in the axis x are going o� the origin. From region V to VI the centers of the
axis y are departing away according to the situation that they are approaching those points in the para-
metric space at the line r � 1=2 and ®nally they disappear. Some complex bifurcations appear when one
goes from the region I and pass to the region VI and from region II to V. In these cases the origin that is a
saddle point transforms to a center and the previous centers disappear.

The phase transitions in the parametric space �r;D� of this quasispin model were analyzed in previous
works (PW) [16,19]. It was found that mainly two types of transition could occur in this model: the ®rst and
the second order phase transitions. These changes of phases take place when varying the values of the

Fig. 1. The parametric phase space is divided into various regions depending on the behavior of its singular points of the nonlinear

dynamical system (14). The straight line when r � 1=2 is outside of our analysis since it represents an integrable system.

Fig. 2. The phase trajectories near the singular points in the region I. The phase trajectories depict saddles and are very similar to those

where kinks appear in the nonrelativistic version of this model.
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relevant parameters that in some sense should be called ``temperatures''. The responsible for such kinds of
transitions are the bubble and kink soliton solutions that ``live'' in the system. The kink soliton excitation in
the ordered phase is responsible for the second-order phase transition to the disordered phase. The bubble
solitons correspond to a localized spatial region of a vanishing ®eld inside an ordered phase represented by
the ground state. The condensation of bubbles generates the ®rst-order phase transitions. On the other
hand, as is known, the mere appearance of saddle singular points underlies the existence of kinks and chaos.
It was demonstrated [14] that the bubble solitons could appear also from saddle singular points.

Let us examine to what extent the behavior near the singular points obtained here is relevant for
studying the parametric phase transitions. By extrapolating and comparing our results with the corre-
sponding ones of PW we can make several important conclusions. In fact, when translating from III region

Fig. 3. In the region II one can observe that the singular points are centers and a saddle.

Fig. 4. The singular points in the region III are once again centers and one saddle near the �0; 0� point. The picture is the same as in the

region I but rotated in an p=2 angle.

Fig. 5. The phase trajectories are more complicated in the region IV but they conserve some saddles and centers. In this region bubble

solitons and plane waves could ``live''.

Fig. 6. The region V is the smallest of all regions we have here predominantly centers and one saddle.
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to the IV one (see Fig. 1) we can notice that a ®rst-order phase transition could occur. This only because of
the change in the number of saddles and centers. This means subsequently that we have two phases with
di�erent probabilities to exist. We could apply the similar reasoning to the passing between sectors IV and
V. In the region IV bubbles could also appear because of the existence of saddles. In the region V there are
predominantly centers and also there are saddles. This means that in both these sectors the possible os-
cillations are of quasiperiodic or periodic type in addition to the bubble solitons. When we check the
transition from VI to the I region a crude restructuring of the phase space is observed. In region I we have
similar phase trajectories that in some sense resemble the phase trajectories of kinks and in the region VI we
have only a center. This last region could contain the wave planes. In this case of passing from sector I to
sector VI we have second-order phase transition.

Resuming, we can say that by varying the parameters, principally the parameter D (®xing r), one could
®nd that saddles and centers could emerge and disappear when passing from one region to another. The
regions which could contain bubbles and kinks in the present paper approximately converge to the regions
of the parametric space of PW and in some sense they complement each other.

5. Conclusions

We have used here the results obtained in various works regarding the GCS and apply them to the
quasispin model of the quantum Hamiltonian obtained by Masperi. As is well known the GCS are a good
(sometimes appropriate) tool for averaging. We studied the simplest dynamical system treated by GCS
method for the lattice model of the phi-six theory and now are able to catch essential features concerning
bifurcations of the singular points that implies phase transitions in the parametric phase space of the model.

As can be inferred from the computer simulations and the analytic calculations realized on the lattice
nonlinear equation, the reduced version of this discrete model belongs to the conservative or to the so called
Hamiltonian system. This reduced version does not embrace, of course, all the rich dynamics that the
system (10) should possess possibly in the second or more approximation. Instead, we have observed that
by analyzing this relatively simple version, one can get a suitable picture of the parametric phase transition
in which the solitonic bubbles and kinks are responsible. By studying the dynamics (specially its singular
points) of this simple model one can predict important conclusions around the role of solitonic bubbles and
kinks.

All the possibilities of singular points of this system are shown in Figs. 2±7. As is seen from the results
the nondegenerate ®xed points (that means no eigenvalue of the linearization is zero) are either center or
saddle points. The right implication of the singular points in the analysis of phase transition can be resumed

Fig. 7. The phase trajectories in the region VI describe periodic or quasi periodic oscillations. When passing from region I to VI one

(or vice versa), the second-order phase transition is observed.
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as following. The saddle points obtained here underlie the existence of both bubble and kink solitons and as
it is obvious the centers are responsible for linear waves. The ®rst-order phase transition occurs when the
saddles and centers transform to another con®guration with saddle and center singular points. The second-
order phase transition appears when a center bifurcates to saddle points and to other centers or these points
transform to only one center. Similarly, of course the account of bifurcations into the phase transition
could be done in the language of Poincare indexes and topological equivalence of phase spaces. All these
reasonings support the statement of the meaning of ®rst and second-order phase transition: As usual, we
can consider ®rst-order phase transition only those of transitions in which ``below '' and ``above'' the
critical points (in r;D space) both phases exist simultaneously (though) with di�erent probabilities. Second-
order phase transitions are those transitions in which ``below'' and ``above'' the critical points only one
phase ``lives'' in each sector.
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