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ON THE DYNAMICS OF THE ONE
PARAMETER FUNCTIONS Fy(2) = 2% + 2az

GUILLERMO SIENRA LOERA

Abstract

We associate the set K(F,), to the family of functions F,(z) = 2%+ 2aZ, where
z € Cand a € R, K(F,) is the set points in C whose orbit under F, is bounded.
We describe the bifurcations of F, and some of its dynamics on K(F), focusing
mainly on the connectedness of K(Fy).

Introduction

The quadratic mappings f.(2) = 2% + ¢, z € C have been studied by many
authors (Douady, Hubbard, Yoccozz, et. al), the dynamics of this family of
holomorphic maps is encoded by the well-known Mandelbrot set. In fact, if
J(f.) denotes the Julia set for the above maps, the set of parameter values ¢
for which J(f,) is connected defines the Mandelbrot set.

More recently J. Milnor, R.Winters [7] and others have studied the equiva-
lent to the Mandelbrot set for the family of antiholomorphic maps defined by
g =2 +c.

On the other hand G. Gémez and S. Lépez de Medrano studied from the
dynamical point of view a classification of families of quadratic maps (with
singularities) from R? to R2, see [3]. In their work, they ask to what extent
the behaviour of the dynamics of holomorphic mappings can be extended to
non-holomorphic maps. One of the families in the classification given in [3]
is Fy(2) = 22 4+ 2az, a € R, for which the authors constructed computational
images of J(F,) (see Definition 2) for some values of a.

The above family F,(z) shares with the holomorphic family f.(z) the fact
that the singular set of both functions is compact and that oo is an attractive
fixed point (see Lemma (3)).The singular set of F(2), is a circle (see §0), while
the singular set of f.(z) is a point. Moreover, F,(2) is a universal unfolding
(a € C) for the map Fy(2) = 22 (see the Appendix)

In this paper we investigate the connectivity of J(F,), proving that J(F,)
is connected if and only if @ € [—1, 2] (see theorems (1), (2), (8)). As in the
complex case, the singular set of ¥, plays an important role in proving the
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above theorems. We use Whitney’s theory on classification of singularities
for maps of RZ and well known topological technighes used in holomorphic
dynamics to prove these theorems. The proof breaks down into several cases
according to the behaviour of the singularity set of F, under iteration. The
singular set >, behaves basically in three different ways as we iterate it:

1. If F,(3,) remains bounded asn — oo (—1 < @ < 1), then J(F,) is connected.

2. If some points of F*(3,) go to oo, but the point —a has bounded orbit (} <
a < 2), then J(Fy) is connected.

3. If —ac F*(2,) » wasn — oo (@ > 20ra < —1), then J(F,) is disconnect-
ed.

At the same time we study some of the dynamics of F, on J(F,) for ¢ €
[—1,2]. For instance, using a A-lemma argument we prove that the stable
manifold of a saddle fixed point of F, is contained in J(F,), (see Corollaries (1)
and (2)).

§ 0. In this section we will establish some basic facts and properties of
the functions F,.
First, observe that the functions F,, are not holomorphic, and have the fol-
lowing properties:
i) Ifr e R, then F,(r) € R.
ii) If p is a cube root of unity then:

Fo(pz) = p(2% + 2az) = p*F,(2),
Fu(p%2) = p(Fo(2)).

iii) F,(z) = Fy(2).
Writing F,(2) in real coordinates, we obtain F,(2) = Fy(x,y) = (x% — y% +
2ax, 2yx — 2ay) with derivative

_(2x+2a -2
DFolx,y) = ( 2y 2% — 2a) )

Hence, the singular set of F,(2), which we will denote by 3", is the set {x2+y% =
a?}, i.e., the circle of radius a centered at 0 = (0, 0). This implies, in particular,
that the functions F,(z) are not quasiconformal if a # 0.

For 2z = (xo, o), the eigenvalues of the derivative at zp are A+(20) = 2(xp +

a? - y2).
The fixed points of F,(z) are 0, pp = 1 — 2a, py = (1/2+a, 1/3a% + a — 1/4)

and ps = (1/2 + a, —+/3a2 + a — 1/4) where p; and p; do not exist if a €
[—1/2,1/6]. Due to condition (ii) above, pp; and p?p; are orbits of period two
fori=0,12.
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The restriction Fy, |g is F,(r) = r2 4 2ar and is topologically conjugate to the
function f.(r) = r? + ¢, where ¢ = —a? + a, by the affine change of coordinates
r—r+a.

The fixed points for F, | are 0 and pp = 1 — 2a.

Also, the singular set is the point —a and F/(0) = 2a; F(py) = 2 — 2a which
coincides with the A, eigenvalue.

For (xo, ¥0) € 3, A+(xo, ¥0) = 4xp and A_(xo,y0) = 0. Thus on 3, the
differential of F,, has rank one.

In [6] Whitney introduced the concepts of fold and cusp maps which we will
use in the following proposition.

The theorems of Whitney on singularities (see [2] or [6]) establish that if
p € R2 ig a fold point for a function f, then f is equivalent to (x, y) — (x%, y) at
0, and if p is a cusp point for f, then f is equivalent to (x, y) — (x3/3 + xy, y)
at 0. Moreover, the set of functions f: R? — R? whose singular points are folds
and cusps are dense in the C* topology.

For every parameter value, the point a is in ), and we have:

PROPOSITION (1). Ifa # 0, for z € 3, —{a, pa, p’a} there is a neighborhood
of z, N, such that F/y, is equivalent to a fold map; and for z € {a, pa, p*a},
F/n, is equivalent to a cusp map.

Proof. Since 3, is a differentiable curve, a point p € 3, is by definition a fold
point if F,/ 3", isregular at p and p € 3, is a cusp point if (Fo/>_,Y(p) = 0
and (F,/ 3 ,)'(p) # 0. Parametrizing 3", as ¢ — ae”, t € [0, 2], we have
Fy(ae*) = a%e? + 2a% ", s0 L F,(ae*) = a?2ie? —i2a%". Hence 4 F(ae") =
0 if e?* — e~# = 0, i.e., € = 1, which implies ¢ = 0,27/3, 47/3. F,/Y, is
regular at 3, —{a, pa, p%a} and any point in this set is a fold point. On the
other hand, ; F,(ae®) = —2a%(2¢% + e~*) # 0 for ¢t = 0, 217/3, 47/3 and so
a, pa, p*a are cusp points. This proves the proposition. ]

One has that F,(3_,) is a hypocycloid of three cusps (the cusps being Fi,(a),
F,(pa), Fy(p*a)). The set (a, YJC R3 is the elliptic umbilic set of the elemen-
tary catastrophes (see [1]).

1. Writing z as re‘© we have that |[Fy(2)| = |22+2a2| = |r2e*©+2are~®|;
for each r, this quantity has a maximum at © = 0 and a minimum at © = o
if a > 0, and viceversa if @ < 0. The point 0 € RZ is an attractive fixed
point for Fy(2) if —~1/2 < a < 1/2, since the eigenvalues of the derivative are
A+(0) = +2a. The fixed point p; = 1 —2a is expansive for ¢ < 1/6 and a saddle
if1/2>a>1/6.

LEMMA(1). If-1/2 < a < 1/2and |2| < 1—2a, then |F}(2)| — Oas n — oo;
moreover, |F™(2)| < |F2~1(2)| for all n > 0.

Proof. Since the funcigion |Fo(2)| has a maximum at © = 0, then [Fg(2)| <
|r? + 2ar|, where z = re’®. This means that |F,(2)| is bounded by the image
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of the point  under the map F,|g. As we have seen in §0, the map F,|r
is conjugate to the map F.(r) = r2 + c with¢ = —a? +a; if -1/2 < @ <
1/2 then —3/4 < ¢ < 1/4. For these values of ¢, the map f. has two fixed
points in R which are (1 — v/1 — 4¢)/2 and (1 + /1 — 4¢)/2, one attractive and
the other repelling, respectively. It is known (see [5] Section 11.1) that the
interval [—((1 + v/1 —4¢)/2),(1 + /1 — 4¢)/2] is mapped inside itself under
f., and every point inside this interval tends uniformly towards the atractive
point (1 — v/1 —4c)/2. The conjugation between f, and F,|R sends 0 to —a,
(1 - vI—4c)/2t0 0,1+ vI—4c)/2 to 1 - 2¢ and —((1 + 1 —40)/2) to —1,
so the interval [-1, 1 — 2a] is mapped inside itself under F,|g and every point
on it tends towards 0 uniformly. This proves the lemma. u

LEMMA (2). If -1/2 < a < 1/2 and |2| > 3, then |F}(2)}{ — co as n — oo.

Proof. We have to observe that in the proof of Lemma (1), f. maps every
point outside the interval [-((1+ /1 — 4¢)/2), (1++/1 — 4¢)/2] to 0o, hence F,|
R sends every point not in the interval [-1, 1 — 2a] to infinity, and the lemma
follows. |

In order to prove the theorems, we need to know the behavior of the inverse
image under F, of a curve that intersects the critical values.

For that, remember that the cusp map is given by the function g:R? — R?
defined by g(x, y) = (x®/3+xy, y). The singular set 3_, is a parabola (¢,-¢*) and
its image g(3",) is the cusp (2¢3/3, —t?) or the set {(x, y) : 22 = ~4/9y%}. The
cusp set g(3_,) divides R? into three pieces:

Ry = {(x,5) :x <0and x* > —4/9y%},
Ry = {(x,5): x> 0and 2% > —4/9y°},
and
C={(x,y):2% < -4/9°};

the set C is the “interior” of the cusp set.

Definition 1. We say that a continuous curve I':{0, 1] — R? is in good posi-
tion with respect to g(3°,) if
@Tng3,)=d¢,or
(b) I‘ﬁg(zg) # ¢ and there exists ¢y, £ € [0, 11(¢o < ¢1), such thatI'[0, 1] € Ry,
I'(t1, t2) € C and I'lts, 1] € Ro.
Also, T is good if it is the finite union of curves as above or if I'(—¢) is good.

PROPOSITION (2). Let I':10, 11 — R2 be a simple, connected curve with I'(t) #
0forallt € [0, 1], which is good with respect to g(3_,). Then g~{(T¢), ¢ € [0, 1],
is also a simple connected curve.

Proof. First, to prove that g~X(I'(t)) is connected, consider the function
h:R? — R3 defined by A(x, y) = (x, y, x3/3+xy) and m: R — R? withw(x, 3, 2) =
(2,%). Then 7 o h = g. The image of R? under % defines the “cusp surface” S,
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and we can consider 7~:R%? — S and A~}|5:S — R2 with A~ gomr—1l = g1
(see Fig. 1).

By hypothesis the curve I'(?) is good with respect to g(3°,), so there exist
to, t1 € [0, 11withTI0, t1] € Ry, I'(#4, t2) € C andTT¢g, 1] € Rs. The piece of curve
I'{0, ¢,1 is such that 7170, ¢;] is a unique curve a[0, #;] on S and 7 1I'zy, 1]
is also a unique curve B¢z, 11. The curve Tfty, 2] is such that 7~ 1T[¢y, to]
consist of three curves yi1lt11, t12], yalt21, £22], vslts1, t32] with the property that
alty) = yi(tn), v1(ti2) = ya(ta1), y2(tez) = ys(ts1) and y3(ts2) = B(¢2). Hence
hYgon-1(TT0, 11) = g~XT[0, 1)) is a connected curve. Outside of C, g~ ! acts as
local diffeomorphism, so the other cases follow from this observation and the
discussion above.

Observe that if T is differentiable, g~'T" is not necessarily differentiable at

girny,).

Figure 1.

Now to prove that g T is simple, suppose it is not and assume that g—'T’
has a crossing point at po. Then po € 3_,. By hypothesis, I" R2 — {0}, s0 po is
a fold point. Under a fold map, any two crossing lines on a small neighborhood
of pp project onto four lines or, if they are symmetric respect to the fold points,
onto two lines, (see fig. 2a).

Thus any loop at py projects onto a loop or a curve as in Figure 2b. In the
first case this implies that I is not a simple curve, and in the second, that T’
is not good with respect to g(5>_ g); in either case, we obtain a contradiction, so

g~ 1T is simple. This proves the proposition.
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Definition 2. For a continuous map f:R? — R2, let
K(f) = {p € R? : |f"(p)| is bounded for all n}.

The set K(f) is formed of the points in the plane whose orbit is bounded. As
in the holomorphic case we call K(f) the filled-in Julia set of f.

Let J(f) = {p € K(f): for every neighborhood V), of p, V, N K(f)* # ¢}
where K(f)° is the complement of K(f). This set is the Julia set of f.
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Figure 2a. Figure 2b.

LEMMA (3). The functions F, extend to a C' map at oo, the point o is a
superattractor fixed point and F, is two to one in a neighborhood of oo.

Proof. To prove that the equation 22 + 2a2 = w has two solutions if |w|
is big enough,we have to solve the simultaneous equations x? — y? + 2ax =
w; and 2xy — 2ay = wp where (w1, wz) = w. The first equation represents
a hyperbola whose asymptotes are the two lines that intersect at the point
(—a, 0) and have slope £1. If w; > —a? the two branches of this hyperbola
intersect the real axis at (—a — /a2 +wy, 0) and at (—a + /a2 +wy,0). If
wy < —a?, the branches of the hyperbola intersect the line (—a, y) at the points
(—a, +v/a? — w,) and at (—a, —v/a? — w1). The second equation represents a
hyperbola with asymptotes the real axis and the line (g, y). This hyperbola
intersects the imaginary axis at the point (0, #2.). Then it is easy to check that
for |w| big enough, the intersection of the two hyperbolas consists of two points.

To prove that F, extends to a C! map, let y(z) = %; then Fy(z) = y1Fyy(2) =
2%2/(z + 2a2%).
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It is clear that F,,(0) = 0, hence oo is a fixed point.

Now
(F), = 227z + 2a2°) — 4022’2 222°
ez (Z + 2a22)? T (2+ 2a22)2
and
- 3 _ 23 4
(), = 2(z+202%)- 222 20z

Z + 2a22)? " (3+2a22)2°

If we divide and multiply this last equation by 22, we obtain that lim,_o(F,), =
0 and lim,_,o(F,); = 0 and so F, is differentiable at 0. Since the Jacobian of
F, i |(F,),|? + |(F)z|? = 0 then 0 is a superattractive fixed point.This finishes
the proof.

The following basic lemma will be useful.

LEMMA (4). Let {C;}; a family of compact sets in R? such that C;y; C C;
for all i, and such that each C; is connected. Then (;_; C; is connected.

Let B(co) be the basin of attraction of co.
THEOREM (1). The set K(Fy) is connected if —1/2 < a < 1/2.

Proof. The proof will be divided in four cases. (according to the dynamics
of F, on K(F,)).

Casel: 0<a<1/3:

For this case we have that }_ N{pp = 1 — 2a} is empty since & < 1 — 2a.
Let Iy denote the circle of radius r about 0, where » > 1. Then I'y € B(co);
by Lemma (1), Ty contains both the attracting fixed point 0 and the singular
set ), in its interior. The preimage I'y of Iy under Fj, is a simple closed curve
which is contained in the interior of I'o. It is mapped in a two to one fashion
onto I'y (by Lemma (3)). The fact that I'; is a simple closed curve follows from
the fact that both 3~ and its image lie inside I'y (infact F >~, — Oasn — oo,
from Lemma (1)). The curves I'y and I'; bound an annular region A;. By the
same argument, there exists a curve I'y which is mapped in a two to one fashion
onto I'y. Moreover F, maps the annular region As between I'; and I'; onto A;,
again in a two to one fashion.

Continuing in this way we obtain a family of simple closed curves {I';} and
annular regions A; between them. The area of the A; must converge to zero.
Each of the curves I'; contains in its interior the disc of radius 1 — 2a, by
Lemma (1). This implies that the curves {I';} converge to a connected, closed
curve denoted by I',.

Noting that K(Fy) = (> intl’» then by Lemma (4), we obtain Case 1.

Case 2: a = 1/3.
In this case the critical set 3°, 5 intersects the fixed point po = 1/3. Since
|Fo(2)| = |r2e%® + 2are~*©| has a maximum at © = 0, for each r; then |Fy(2)| <
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[r? + 2ar|. This implies that [Fy(2)] < 1/3 if z € T, 5, equality holding if 2
consist of the cusp points po, ppo, p?po. fw € 3, /3 —{Po, ppo, 0%po} then, from
the inequality above and Lemma (1), we see that Flw — 0 as n — oo.

As in case 1, let Ty be any circle centered at 0 with I'y € B(co); then the
curve I'p contains on its interior 3,3 and Fy/3(3;/3). So we can consider

I, = Fl“/;I"o, which is a simple closed curve. I'; is mapped on a two to one
fashion onto 'y (by Lemma (3)).

We can proceed in this way, obtaining, for each natural number i, the simple
closed curveT’;, asin case 1, such thatT';,; C intl’; and T; containsinitsinterior
> /3 and Fy;3(3 >, s3)- Hence K(Fy3) = Miso intI’; is connected by Lemma (4).

Case3:1/3<a<1/2.

In this case the saddle fixed point py is such that |pg| < a. The unstable
manifold of po, W*(po), is the set (0, co) (see the proof of Lemma (1)), so F2%,, —
00 as n — oo, and the point —a € ¥, is mapped to ¢ = (—a?,0) with g} <
|1 — 2a|. Hence by Lemma (1), F(q) — 0 as n — co.

Let Ty be a circle with centre at 0 and such that Ty C B(co). Then we
can choose Iy such that it intersects a neighborhood of the cusps of F,(}",) in
good position. Hence F; }(Ty) = I'; is a simple closed curve (by Proposition
2), which is also good with respect to the cusps of F,(3,). Proceeding in this
way, we obtain a family {T;} of simple closed curves with I';,; C intl';. Hence,
K(F,) = nizo intT; is connected by Lemma (4).

Case4: —-1/2<a<0.

In this case 0 is also an attractive fixed point and py is now an expansive
fixed point with |po| > a.

Let I’y be a circle with center 0, such that [y C B(co). By Lemma (1), any
point w € 3, tends to the origin, so F,(3_,) C intl',. Now we can proceed as
in Cases 1 or 2. This finishes the proof of the theorem. n

We can be more specific about the dynamics of the functions F, with —1/2 <
a<1/2

For instance, if we consider the point py, with —1/2 < a < 1/6, we find that
Do is an expanding fixed point which bifurcates into a saddle when 1/6 < a <
1/2. By the stable manifold theorem, py has a stable manifold W;(po) and an
unstable manifold W¥(p,), which, as we have seen, is (0, 0o).

Since ppo and p?pp is a period two orbit, by property (ii) in §0, it is of sadle
type when 1/6 < a < 1/2. The unstable manifold of ppo under FZ is pW(po) =
p(0, 00), and the unstable manifold of p%py under F? is p2W¥(po) = p*(0, o).

For a point q; € F;(py), i = 1, 2, one can take the component of the set
F;YW%(pp)) or of F;Y(WE(po)) that intersects g; and call it Wi(q;), (W5(q:)
resp.) By the position of W*(po), (WE(po) resp.) with respect to K, 3~ ,, we can
see that Wi(q;), (W5(g;) resp.) are one dimensional manifolds. This is also true
for pp; € F7 Y (p'py), i =1, 2.
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Let w; be in the backward orbit of py, ppo or p2po.
COROLLARY (1). The sets Wi(w;) are contained in J(Fy,) for 1/6 < a < 1/2.

Proof. It'is enough to prove that W*(py) C J(F,). First observe that py =
1 - 2a € J(F,). Now since pp is a saddle fixed point, the set W*(pg) has
a tubular neighborhood T' (A-lemma) foliated by small intervals transversal
to W*(po) and invariant under F,. Since every point p € W*(pp) tends to po
and W¥(po) = (0,.00), W*(po) divides T in two parts: one, of those points in
T that tend to oco; the other one, of those that tend to 0. This implies that
We(po) C J(Fy). [

This corollary also implies that Fy,|J(F,) is not topologically transitive.

Since the stable manifolds are differentiable curves, the boundary of K(F,)
contains these curves, which are the bays that one observes in the computer
graphics of K(F,) (see also [3]). There is also a “filament” on the middle point
of each bay which is not in K(F,) and which corresponds to the part of W*(w;)
that tends to co. :

If1/6 < a, two new repelling fixed points appear: p1,ps (see Ref §0). One
can see that p; y p2 € J(F,) by checking that the points p. = p; + (¢, 0) tends
to oo for all € > 0. Also, four new repelling period two points appear: pp;, p%p1,
pD2, p2p2. We have:

COROLLARY (2). The boundaries of Wg(po), W5(ppo), Wi(ppo) are the sets
{p1, P2}, {pP1, PP2}, {P?P1, p*p2}, respectively.

Proof. By Corollary (1), Wi(po) is in J(F,), then the boundary of W:(po)
either consists of two fixed points or of an orbit of period two. In the first
case the fixed points must be p; and p;; in the second case one can check
that the orbits of period two are {ppo, p?po}, {pP1, p?p1} and {pp2, p?p2}. So
the boundary of W2(py) must be p; and p;. Applying p and p?, we prove the
corollary. ]

2. In this section we will study the case when 1/2 < a < .2; for these
parameter values, the restriction F, |y is conjugate to x — x%+¢ with ¢ running
from +1/4 to —2. Thus, K(Fg|r) is the interval [~2a, 0], and if w € R — [2g, 0]
then F(w) — oo as n — oc.

By property (ii) in §0, the sets [-2a, 0], p[—2a, 0}, p*[—2a, 0] are in K(F,),
so we define the set

T = {U2oF ™(p'[-2a,0]):i = 0,1,2}.

The set T has the property that T C K(F,). Notice that the dynamics of F, on
[—2a, 0] as @ moves towards —2, has a cascade of period doubling bifurcations.

The set T (see fig.3) is an infinite tree with all of its vertices of degree three,
as can be seen from the fact that if Nj is a small enough neighborhood of 0, then
NoNFo(Y,) = ¢, 50 F; 1 maps Ny diffeomorphically onto a neighborhood of any
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Figure 3.

e

of the points p*(—2a) since Fy(p'(~2a)) = 0, i = 0, 1, 2. The same arguments
apply at each point of F;™(0).

We can also observe that the set (0o, —2) U (0, co) = Wy together with pW,
and p?W, are points that go to co with n. We can consider at each vertex
of T sets F;*Wo,F, "pW,, F;"p?W, and define the set W = (72 o(F; "W, U
F;"pW, U F;"p?W,). This set has the property that F;'W = W and for all
w € W, FX(w) tends to oo as n does.

THEOREM (2). For1/2 < a < 2, K(Fy)is connected and K(F,)—neo F;™(0)
is disconnected.

Proof. By Lemma (3), oo is an attractive fixed point for F,. Also the cusp
points of 3, : @, pa,pa, tend to co. However, the points —a, —pa, —p®a, which
arein y_,, remain bounded. Let I'o be a circle with center 0 contained in the
region of attraction of co. For the family I';, = F,; "I’y there exists a positive
number N such that Ty N F, ", # ¢ and we can choose Iy in such way that
'y is good with respect to Fo(3",).

Then, as in the proof of Theorem (1), I';, is a simple closed curve for £ =0, 1,
2,...,80 Ty is a connected set, implying that K(F,) = [, _, intI’; is a connected
set by Lemma (4).

Due to the existence of the set W mentioned before Theorem (2), the curve
I'., has crossing points at each point of the set | J;2, F,; "(0), which in turn
implies that K(F,) — a2, F;™(0) is disconnected as we claimed. This proves
the theorem. n

Computer experiments shows that K(F,) must coincide with the set T', but
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we have not been able to prove it.

The dynamics of F, undergoes several bifurcations on the set T'. For in-
stance when a is in the interval (1/2,2/3), F, fixes 0 and pp = 1/2a. The
point 0 becomes an expansive fixed point while py becomes a saddle point, and
W:(po) = (—2a, 0). The points ppo and p?py are period two saddle points with
W5(pp) = p(—2a, 0) U p*(—2a, 0). When a > 3/2, the fixed saddle point bifur-
cates into a period two saddle orbit, which in turn bifurcates into a period four
saddle orbit and so on.

3. In this section we will deal with the remaining cases. Specifically we
have:

THEOREM (3). If —1 < a < —1/2, then K(F,) is a connected set.

Proof. Inthiscase F,|ris fa(r) = r2+2ar, which is conjugate to fe: x — x%+c
with ¢ between —3/4 and —2, and there is a very rich dynamics as ¢ tends to
—2. However, K(f,) = [-(Y[=% _ )12, 1eviie]

Using the affine transformation between f. and f, we get that K(F) =
{—1, 1—2a]. Since for each r the maximum and minimum of | F,(2)| are achieved
when z € R, F;*(3",) remains bounded.

Since oo is an attractive fixed point by Lemma (3), and (00, —1)U(1 - 2a, 00)
is contained in B(co), there exists a simple closed curve Iy contained in B(oco)
with Ty NR = {~1} U {1 — 2a} € B(co). For all n we have F; "T D intF;+'I
and for all n, F; "I’y contains Fm™(}",) in its interior (for all m), so F; "Iy is
a simple closed curve for all n. The limit curve lim,_.oc F; "To is a connected
curve, and ﬂ;’;o intF; "T, is an F,— invariant set which agrees with K(F,).
Thus K(F,) is a connected set by Lemma (4). This proves the theorem. ]

Finally,
THEOREM (4). If a > 20r a < —1, then K(F,) is a disconnected set.

Proof. The restriction of Fy, to the reals is conjugate to x — %2 + c; when
a ¢ [-1,2), then ¢ < —2, and the critical point —a of F,|g, tends to infinity.

Now since Fy(—a) = —a? € F4(3_,), let yo be a small piece of a circle tangent
to Fo(3,) at —a? (see Figure 4).

On the other hand, co is an attractive point of F; by Lemma (3), so there
exists a positive number M such thatifw € R? with jw| > M, then F; "(w) — o0
as n — oo. As F;™(—a?) tends to oo, let N be a positive integer number such
that |FN(—a?)| > M; then F¥(yo) is a piece of a curve that can be completed
to a simple closed curve Iy such that for all w € T'o, lw| > M.

The curve Iy and its exterior tends to oo as n does, and I'y contains >, and
Fi(Y,) in its interior. Let [y = F 1Ty, Ty = F 2Ty, and so on. Now FNT
is, by construction, tangent to F,(3",), at —a?. So F;¥-1T is a curve with a
crossing point at —a since this is a fold point.

Then, if D is a disc contained in the interior of I'o, it happens that the set
F;N-1D has at least two components. Since K(Fy) = N2y intFa "To, K(F,)
is disconnected. This proves the theorem. [ ]
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From the proof of the theorem, we conclude that the set 5°  behaves in
basically three different ways as we iterate it:

1) F25" ) remains bounded as 7 — =o(-1 < a < 1/3}

2) Some points of F'(3" 1 go to o6, but -« has bounded orbit (1/3 < a < 2).

3l—ac FHY ) —wasn — xla»2o0rag < -1k

Theorems (1), (2), and (3) imply that K(F,})is connected in cases (1) and (2)
and diseonnected in case (3).

Appendix

As we have mentioned in the Introduetion, the family of maps F,(z) = 2% +
94z is a uni- ~rsal unfolding of the map Fiolz) 2%, To see that, let us take a
universal unt. .ding for Fo(z) given in {4], which i3

Glay, ag, x, ¥) = (ay, &, 2 — yz — Qx4 dyy, 2xvh

Now, as proved in [3], the functions gix, ») - (x?  ¥* ¢ a1x + asy, 2xy) and
Fix.y) = 1x? ¥t aix — asy, 23y + @ax — a1y satisfy f o A = B o g where
A and B are the affine maps given by Alx, y) = (2x + a1/2, 2y — 2/2) and
Bix, v} = (dx | 3/4a? — a3, 4y + a1a2/2). This implies that the unfolding G
and Fiagy, ao, x, ¥) = lay, av, - yz + a1 x -+ aay, 2xv Fasx — ayv) are such that
God - o F, where ¢ = id x A and ¢ = id « B are unfoldings of the identity,
henece F and G are isomorphic. Since the map F is an unfolding, then it is a
universal unfolding. The function flx, ¥)is Fo(z) - 2% | 2az with 2a = ay +ias.
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