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Abstract: - Integrate-and-fire (I+F) systems are ubiquitous in nature and neurons constitute a conspicuous 
example. The interaction of nerve cells in a neural network frequently involves the transmission of periodic 
signals. On the other hand, the investigation of the dynamics of a periodically stimulated I+F system is a 
difficult and classical problem of nonlinear oscillation theory, of interest not only to Neurophysiology but to 
many others fields of science and engineering. In this paper, we present a simple mechanical integrate-and-fire 
system that mimics the process of periodic stimulation of a neural pacemaker; we use it to illustrate the 
application of the mathematical theory of circle maps when investigating this "mechanical cell’s" response to 
external stimulation. In particular, we discuss the importance of some regularity properties —continuity and 
injectivity— of the system’s firing circle maps, in helping to understand the synchronization phenomena that 
manifest themselves in this scenario.  
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1  Integrate and Fire Neurons  
     In the second half of the past century, interest in 
integrate-and-fire (I+F) systems arose in connection 
with Balthazar van der Pol's studies of non linear 
oscillation phenomena in electronics and physiology 
[1,2,3]. Originally I+F systems were called 
"relaxation oscillators" because they exhibit certain 
kind of periodic behavior in which a slow phase of 
charge is followed by a sudden discharge that 
"relaxes" the system towards a lower energy rest 
state. Later, as a consequence of the work of A.L. 
Hodgkin, A.F. Huxley, and R. FitzHugh in the 
1960's, the connection of this relaxation-oscillation 
phenomenon to excitability processes which are 
fundamental for the physiology of nerve cells, was 
made clear [4,5]. 
     Today, the class of I+F systems is understood to 
be constituted by systems in which a characteristic 
mechanism of charge (integration) and discharge 
(firing) gives place not only to the relaxation process 
and the consequent nonlinear oscillations 
investigated by van der Pol, but also to the 
distinctive features of the excitability phenomenon: 
the existence of a firing threshold, an "all or none" 
response and a refractory period. Accordingly, nerve 
cells constitute a paradigmatic case of I+F behavior 
in   which   the   accumulation  of  ionic  charge,  that 

brings the cell membrane potential above threshold 
and causes the nerve impulses (action potentials), 
follows the integration of afferent signals.  
      A combination of causes of biophysical nature 
underlies the dynamics of the action potential across 
the cell membrane. Active channels that selectively 
allow ionic flow through the membrane have been 
identified as being responsible for the variation of 
membrane permeability and the time dependency of 
the ionic currents across it. After Hodgkin and 
Huxley’s pioneer work, the dynamics of these 
currents and the voltage across the cell membrane 
have been successfully modeled in terms of 
differential equation systems. Hodgkin and Huxley’s 
famous model, used a set of four differential 
equations, but more equations were required to 
model other phenomena that were discovered 
afterwards. The mathematical complexity of the 
models, determined by the high dimension and 
nonlinearity of the equations, presents major 
difficulties in carrying out their analysis and 
motivates the design of simplified models. For 
instance, the two dimensional FitzHugh-Nagumo 
model (simpler than Hodgkin and Huxley's model) 
[6,7] although sacrificing a good deal of biophysical 
meaning, has enough dynamic complexity to explain 
the basic  aspects  of  excitable  behavior.  Similarly, 
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modeling more complex phenomena, like the  
parabolic bursting oscillations observed in the 
abdominal ganglion of aplysia, requires models with 
more than four differential equations [8,9], although 
their basic dynamic features has been captured with 
simpler three dimensional models which clearly 
show the main mechanisms responsible for the 
observed phenomenon [10]. 
      Efforts to simplify the mathematical structure of 
the models, while conserving enough richness to 
produce and study the phenomena of interest, have 
also been applied to the analysis of an old and 
fundamental problem in the theory of oscillations 
which is the main subject of this paper: the periodic 
forcing of an I+F oscillator. The neurobiological 
context poses some issues of interest in relation with 
this problem. One of these is to ascertain whether 
the integrate-and-fire neuron will have some sort of 
synchronization (with respect to the afferent periodic 
signal) or if its response will be asynchronous 
(disordered). Again, because of their mathematical 
complexity, these problems cannot be fully 
approached analytically. Even the analysis of the 
periodic stimulation of the simple two dimensional 
model of FitzHugh-Nagumo poses great difficulty 
and only limited results have been obtained (mainly 
computational) [11-14]. Nonetheless, an important 
step forward in the understanding of the 
synchronization problem has been taken by 
developing even simpler models in which the 
dynamics of the voltage across the cell membrane 
obeys just one differential equation [15,16] or in 
which  the model is constructed without a 
differential equation but rather with a plain 
geometrical rule [17]. The importance of these 
models is that they allow the study of the dynamics 
of the forced oscillator in terms of the iteration of a 
circle map. These models of forced I+F systems are 
called differential, or geometrical one dimensional 
models, respectively. 
 
 
2  Circle Maps and Synchronization 
     Since all the action potentials (spikes) that are 
fired by a particular neuron are identical, the long 
run behavior of the stimulated cell can be accounted 
for by the specification of a sequence of firing times 
{tn}. This firing sequence completely describes the 
activity of the stimulated cell (Fig.1).  
     We want to analyze the response (the firing 
sequences) of a neural pacemaker that is receiving a 
periodic stimulation, of period T0. For this objective 
it will be is also convenient to monitor the  phases  
of  the  firing times. 

 
 

Fig.1 Action potentials train of a neural pacemaker  
 

     Each instantaneous event (spike) will occur at a 
certain time tn which in turn occurs at certain phase 
xn of the stimulating cycle ( )00 Txn ≤≤ , called the 
firing phase. The sequence {xn} can be plotted in the 
circumference of length T0 and it is called the firing 
phase sequence of the forced oscillator (Fig.2). 
Firing phases (xn) and firing times (tn) are related by 
the equation: xn = tn mod T0, where T0 is the period of 
the stimulating signal and tn mod T0 denotes the 
remainder of the division tn / T0. 
 

 
Fig.2 Firing phases in the circumference converging to 

the phase ∞x . 
 
       When the cell is responding to the stimulation 
with a simple 1:1 synchronization mode (the cell 
fires once per each stimulation cycle), the 
corresponding firing time sequence is given 
recursively by the equation tn+1 = tn+T0. More 
general modes of synchronization (q:p), with q and p 
positive integers, involve more complex “periodic 
sequences”, {tn}, in which a temporarily structured 
set (rhythm), of q spikes and duration interval pT0, 
periodically repeats: NnpTtt nqn ∈∀+=+ ,0  (the cell 

fires q spikes during p stimulation cycles). When 
this rational synchronization condition is not 
satisfied, the response of the stimulated system is 
classified as irregular or asynchronous. 
     General natural systems and nerve cells in 
particular, involve various physical parameters. An 
important research objective is to find out for a 
given forced I+F model, what forms of 
synchronization are permissible and what parameter 
conditions determine them. The simple one 
dimensional models that we consider in this paper 
(either  geometrical   or   differential),   determine   a 
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 firing map, ,: RRa →  whose iterations generate 
the firing sequences in the line, that is to say:  

tn = an(t0), ∀ n∈ N. 
     It is a remarkable fact that (because of the 
periodicity of the stimulus) this firing map has the 
following property: a(t+ T0)=a(t)+ T0, for all t. This 
means that a(t) represents (is a lift of) a map from 
the circle  onto  itself. This circle map, a(x), encodes 
the phase response of the I+F system to the periodic 
stimulation and is called the firing  phase  map.  The 
firing phase sequences are the orbits of the semi-
dynamical system in the circumference (of length 
T0) generated by a(x):  

xn = αn(x0), ∀ n∈ N. 
     Therefore, if the firing phase map has a periodic 
attractor of period q and winding number p, the I+F 
system exhibits (q:p)-synchronization. 
     The attractor in the circle is constituted by a finite 
sequence of firing phases (periodic orbit):  x0,…,xq-1  
at which the system cyclically fires. The cycle is 
completed after the system has circled p times 
around the circumference, (of length T0), and again 
reaches the initial phase x0.  
 

 
 

Fig.3 Rational synchronization regions  
in the classical bifurcation diagram. 

 
     In general, the synchronization mode of a forced 
parameter-dependant I+F system will change with 
the parameters values; the regions in the parameter 
space where the system has the same type (q:p) of 
synchronization, are known as synchronization 
regions or Arnold's tongues. The set of 
synchronization regions in the parameter space 
constitute a bifurcation diagram (Fig.3) that encodes 
the synchronization properties of the I+F system. 
The rotation theory  of  circle maps that we review 
below, gives us elements to calculate these 
synchronization regions. This theory relates the 
notion   of   rotation    number, originally formulated 
by H. Poincaré, with the existence of periodic 

 attractors of the circle map, and has evolved today 
to constitute a convenient framework to describe and 
investigate the synchronization phenomena that 
manifest in forced one dimensional I+F systems.We 
will see below, how it follows from rotation theory 
that some relevant features of the geometrical 
structure of the array of tongues in the parameter 
space depend upon the regularity properties of the 
system’s firing maps. 

 

 

3  A Mechanical Neuron Analog 
      In Fig.(4A) we see an ancient device known as 
the “see-saw oscillator”. As the water falls from the 
pipe, the container fills up until it reaches a 
threshold weight (w0) that displaces the system away 
from equilibrium. In doing, so the water in the 
container (membrane voltage v(t)) falls down and 
the system recovers the initial equilibrium state with 
a certain amount of water vR < w. If the container 
receives only a sub-threshold amount of water, the 
see-saw just suffers a slight deviation from 
equilibrium and recovers without discharging any 
water at all. Like a neural pacemaker, when this 
mechanical analog receives a constant flow of water, 
it responds with a periodic train of discharges 
(spikes) that creates a saw-tooth pattern (Fig.4B).  
 

 
 

Fig.4 (A) Mechanical neuron. (B) Saw-tooth oscillations 
 

As would be expected, the inter-spike period, T(I), is 
a decreasing function of the flow intensity, I: 
T(I)=(w-vR)/I. The firing sequence is obtained 
recursively with the equation: tn+1 = tn + T(I). 
 

 
 

Fig.5 Periodically stimulated mechanical neuron. 
 

     In order to mimic the process of periodic 
stimulation  of the cell (that we assume  has a period 
T0), we let the see-saw to collide and discharge over 
the surface of an accessory elevator that periodically 
moves up and down (Fig.5). Since  the  elevator  will 
collide  with  the  see-saw  at  different   heights,  the 
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amount of water discharged will also be variable; 
therefore, after each discharge the container will 
reach the equilibrium position with different levels 
of water. Consequently, the elapsed time between 
discharges tn+1 - tn will be not only a function of the 
current intensity I, but will also depend on the initial 
phase of the movement.  For a given initial time t0, 
the   corresponding   time   sequence   {tn}   may    
be synchronized with the stimulating agent 
(tn+q=tn+pT0, ∀ n ∈ N)  or, in the opposite case, it  
will  be  distributed  in an asynchronous fashion with 
respect to the forcing rhythm. 
     Being a classical mechanical system, the 
dynamics of the forced see-saw oscillator is 
governed by a system of two ordinary differential 
equations whose analysis is complicated because 
they are not linear and have discontinuous 
coefficients. In the search of a simpler one 
dimensional geometrical model, we take into 
account the following: if the intensity of the water  
current  is  not too large, the time of discharge will 
be fast compared with the charge process, therefore, 
in a first approximation we can assume that the 
discharge occurs instantly. Consequently the 
temporal course of v(t), the weight of the water 
contained in the tank at time t, follows the sawtooth 
graph presented in Fig.6. In it we see that after each 
discharge (action potential) the system relaxes to a 
“periodic floor” whose height is determined by the 
amount of water left in the container after each 
discharge.  
 

 
 

Fig.6 Geometrical model. 
 

     For convenience, we assume here that the forcing 
period is T0 = 1  and that the weight of the water left 
after a discharge at time t, is given by the function:  

( ) sin(2 )A t H tπ= − . 
     The associated firing phase map, a, of the 
mechanical neuron depends on the values of the 
system parameters (H, I, w), where I is the intensity 
of the current and w is the counterweight of the see-
saw. Two remarkable facts arise: 
(1) The dynamics of this one dimensional 
geometrical model of the periodically stimulated 
neuron is governed by the classic family of circle 
maps [18]:  

( ) sin(2 ) mod 1t a t b tα π= + + , 
where a=w/I and b=H/I.  

2) This parametric family of circle map reproduces 
qualitatively the dynamics of the two dimensional 
system of differential equations that governs the 
mechanical neuron analog [19].  
     It is well known that the maps of the classic  
family may have periodic  orbits  of  all  periods  q  
and  winding number p. Therefore we predict that it 
is possible to make the mechanical neuron to exhibit  
any type (q:p) of synchronization, choosing 
appropriate values for the parameters (a, b).  Using  
Poincaré's rotation number and other concepts of 
modern circle maps rotation theory [20], it is 
possible to calculate the synchronization regions in 
parameter space depicted in Fig.3. 

  

 
 

Fig.7 Regions R1 and R3 for the mechanical neuron. 
(close-up of Fig.3) 

 
     Each region in this bifurcation diagram, 
represents the set of parameters values (a,b) that 
configure the system to produce a specific type of 
synchronization. As we cross the boundaries of these 
synchronization regions, the response of the neuron 
to the external stimulation changes from one type 
q:p of synchronization, to another type q':p'. A 
peculiar property of this classical bifurcation 
diagram is that the system responds with 
synchronization q:p at the tongue that is rooted at 
the point (a,b) = (p/q,0) of the parameter space 
(Fig.7). 
 
 
4  Differential Models (1-D) 
     Periodically stimulated I+F neurons are also 
modeled [16,21,22] with just a first order differential 
equation 
                            ( , , )v F t v λ=& ,                          (1) 

 
periodic in t, of period T0, and subjected to a firing 
condition: 
                      ( ) lim ( )R T

t
v v if v t v

τ
τ

−→
= =               (2) 

 

(left lateral limit), where vR and vT are fixed 
constants corresponding to the rest and threshold 
membrane electric potential values and λ is a 
vector of parameters. At any given time t, the 
system´s firing map, a(t), is then defined as (Fig.8): 
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{ }( ) min : ( ) Ta t t v vτ τ= > = . 

If for some time t this set is empty, the function a(t) 
is not defined in  t,  and  it  is  said  that  "the  neuron 
does not fire from the time t".  When there are such 
points, t, outside of the domain (Da) of the firing 
map and a(Da) ⊄ Da , some firing sequences will end 
in finite time; this situation is known as the 
"oscillator’s death". It follows from this remark that 
the knowledge of Da is fundamental to determine the 
extent of the life domain of the oscillator. In general, 
since the firing function a is not analytically 
accessible, there are some difficulties to calculate 
Da: it would be necessary to find out the general 
solution   of   the   nonlinear  differential  equation,  
for which there  are no formulas  or  general  
methods of solution. However, there are general 
results about the extent and topological structure of 
the set Da that apply in the case in which the state 
variable (voltage) of the I+F system grows linearly, 
that is, when ( )λ,,vtF  is a linear function of the 
variable v [23]. The general nonlinear case still 
remains to be investigated. 
 

 
Fig.8 Sawtooth oscillations of a differential model. 

 
     It should be observed that, in this context, the fact 
that this firing map a is a circle map is a direct 
consequence of the periodicity of the differential 
equation.  
 
 
5  Rotation Intervals  
     For a continuous circle map a, the rotation 
number of the orbit with starting time t0 = t , is 
defined as: 

( ) ( )
1modlim, 








=

∞→ n
a

a
n

n

τ
τρ  

if this limit exists. If the rotation number is a rational 
number p/q, then the orbit converges to a periodic 
attractor of period q, and winding number p, which 
means a (q:p) synchronization from the initial 
condition t0= t .  Generally, the limit value and the 
synchronization type will depend on the value t  of 
this initial condition. However, when the firing map 
a(t) is continuous and injective, the limit exists and 
does not depend upon t . In this case, assuming that 
the rotation number is p/q, it can be proved that 
almost all the orbits converge to a  periodic  attractor 
of the same period q and winding number p. 

Consequently, the theory predicts that the I+F 
system  will   exhibit   an   observable   synchronized 
response, (q:p), to the periodic stimulus. This type of 
synchronization will be observed for almost all 
initial conditions. On the other hand, when the firing 
map is not injective, the set of rotation numbers may 
be a non trivial closed interval [a,b]. For every 
rational number p/q in this rotation interval, there 
will be a periodic orbit of the circle map with period 
q and winding number p. But not all of these  
periodic orbits will cause an observable q:p-
synchronization; this is due to the fact that all, but a 
finite   number   of   these   orbits  are  unstable. 
      The dynamics of periodically stimulated neurons 
that are encoded by non injective maps has a rich 
complexity and  may  exhibit  multistability   and   
even   chaotic behavior. In contrast, the dynamics of 
the neurons that have associated continuous and 
injective maps is simpler; it is restricted to express 
synchronization of a unique q:p type, for each 
parameter configuration. A brief review of rotation 
theory can be found in [18]. 
 
 
6  Regularity of the Firing Maps 
     The following theorems establish computable 
conditions to determine the parametric 
configurations of the model that will render a 
continuous and/or injective firing map [24]. 
      These regularity theorems apply to a general 
differential I+F model like the one given by the 
equations (1) and (2). Consequently, F stands for the 
function referred in those equations and Da denotes 
the domain of the I+F system's firing map. 
 

Injectivity theorem. The firing map ( )ta  is 
injective in ( )aDint  if and only if ( ) 0,, ≥λRvtF  for 

all ( )aDt int∈ . 
 

Continuity theorem. The firing map ( )ta  is 
continuous in ( )aDint  if and only if ( ) 0,, ≥λTvtF  
for all t in ( )( )aDa int . 
 

     The force of these theorems resides in the fact 
that they do not require any knowledge about the 
solutions of the differential equations: all the 
information required to validate the hypothesis is in 
the function ( )λ,,vtF  that defines the model. In fact, 
if we define the functions ( ) ( )λλ ,, RR vtFS =  and 

( ) ( )λλ ,, TT vtFS = , it follows from these regularity 
theorems that the two hyper-surfaces (manifolds) 
defined in the parameter space by the equations: 
 

( )
( ) ,0

0
=
=

λ
λ

T

R

S
S  
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are the boundaries of the continuity and injectivity 
regions of the system. 
     These hyper-surfaces may divide the parameter 
space in many different ways and (in the more 
general case) will determine all the following 
regularity regions for the firing map: 
    (R1). Where the map is one to one and continuous; 
    (R2). Where the map is one to one but not                                                                  
continuous; 
    (R3). Where the map is continuous but not 
injective; 
    (R4). The complement of the previous. (where the 
map is neither continuous nor injective). 
     Each point in the parameter space represents a 
parameter configuration of the system and has an 
associated firing map to which it corresponds, a 
unique rotation interval. Nevertheless, the rotation 
intervals of two different maps (corresponding to 
different parameter configurations) may intersect 
and foster the coexistence of periodic attractors with 
different periods and winding numbers 
(multistability phenomenon). This situation provides 
a theoretical explanation of the synchronization 
jumps that has been observed in these forced I+F 
systems as we perturb the initial conditions (with a 
fixed parameter configuration).  
     Rotation theory predicts that the rotation intervals 
of the firing maps of an I+F system with parametric 
configuration in the region R1 can not have non 
trivial intersections: in this region the rotation 
interval reduces to a single point. Therefore, in this 
region all the periodic orbits ought to have the same 
period q and winding number p and hence the 
system cannot suffer synchronization jumps.  
     For some I+F systems the number of regularity 
regions may be smaller. We can observe this fact in 
the bifurcation diagram of the mechanical neuron 
(Fig.3). Since for this particular example we have an 
explicit analytical expression for the bi-parametric 
family of firing maps, it is easy to check that the 
circle maps of the family are continuous for all 
parameter values and they are injective only when 
b=1/(2π). Thus, the parameter space of the 
mechanical neuron is the union of only two 
regularity regions: R1 and R3. It is clear from the 
close-up of Fig.7 that the synchronization regions do 
not intersect with each other when they are 
contained in the regularity region R1, but intersect 
pair wise as they extend into the regularity region R3.  
It is in this region where the bi-stability phenomenon 
and the consequent jumps of synchronization 
emerge.  
     As we have seen, the system’s circle firing map is 
charged with useful information about the dynamics 
of  the  forced  oscillator.  In  general  we  will not be 

able to obtain an explicit analytic formula for this 
map as we have done for the mechanical neuron. 
However, in virtue of the regularity theorems, for a 
general differential I+F model we can calculate the 
boundary of these regions using the above defined 
hyper-surfaces SR( λ )  and ST ( λ ). 
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