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1. Introduction. In this dissertation we analyze mathematical models for dengue disease
to characterize stability properties of equilibria as well as the threshold parameters that
determine the existence of endemic or disease{free equilibria.

Dengue fever is a common arboviral disease in tropical regions of the world. It is trans-
mitted to humans by the bite of Aedes mosquitoes (A. aegypti and A. albopictus are the
main vectors). Four serotypes of the viruses have been identi�ed, denoted by I, II, II, IV.
Infection by any single serotype produces long lasting immunity to it, but apparently only
temporary cross immunity to others. The mosquitoes never recover from the infection since
their infective period ends with their death.

In the past forty years, a severe form of the disease, dengue hemorrhagic fever/dengue
shock syndrome (DHF/DSS), has become a major public health problem in Southeast Asia.
There is evidence that a similar increase in the disease severity may be occurring in the
Americas. No vaccine is available, thus e�ort to control the disease focus on the vector.

Appropiate mathematical models can provide a qualitative assesment of the risk of the
spread of this disease, as well as the e�eciveness of the mosquito control methods. To model
the transmission of the disease, we use systems of non{linear ordinary di�erential equations
which incorporate the structure of the population imposed by the characteristics of the
disease: susceptible, infected and recovered humans, as well as the dynamics of the vector
population.

2. Model for arbovirus diseases. In the �rst chapter we study a general model for
the transmission of arbovirus diseases, closed related to the one proposed in [1], [8]. Here,
me make a global analysis of the equations. In this model we assume that the human
population is constant and only one virus serotype is present.

We denote by SH and IH the proportions of susceptible and infectious humans, and
by IV the proportion of infectious mosquitoes. Then the model is given by the following
equations:
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S0H(t) = �H(1� SH)� b�H
NV

NH +m
SHIV

I 0H(t) = b�H
NV

NH +m
SHIV � (
H + �H)IH (2:1)

I 0V (t) = b�V
NH

NH +m
(1� IV )IH � �V IV ;

where NH and NV are the human and vector populations with constant death rates given
by �H and �V , respectively; b is the rate of biting by a single mosquito (number of bites
per unit of time); m is the number of alternative hosts available as blood sources for the
mosquitoes; �H is the proportion of infectious bites on humans that produce an infection;
�V is the porportion of infectious bites that produce infection on vectors and 
H is the
recovery rate in humans.

The region of biological interest


 = f(SH ; IH ; IV ) : 0 � IV � 1; 0 � SH ; 0 � IH ; SH + IH � 1g

is positively invariant under the 
ow induced by (2.1), as the vector �eld on the boundary
does not point to the exterior.

The model has two equilibria:

E0 = (1; 0; 0) and E1 = (S�H ; I
�

H ; I
�

V )

where

S�H =
� +M

� + P0M
; I�H =

P0 � 1

� + P0M
; I�V =

�(P0 � 1)

P0(� +M)
(2.2)

and

� =
b�VNH

�V (NH +m)
; M =


H + �H
�H

; P0 =
b2�H�VNHNV

(NH +m)2�V (
H + �H)
: (2.3)

E0 is the disease{free equilibrium and E1 corresponds to the endemic value.
The quantity R0 =

p
P0 is called the basic reproductive number. It represents the

number of secondary cases, that an infective individual can generate during his infectious
period, when introduced into a population of susceptibles. This number gives a criterion of
the spread of disease.

The following result summarizes the behaviour of system (2.1):

Theorem 2.1 If P0 � 1, the only equilibrium point in the feasible region 
 is the disease
free{equilibrium, and it is globally asymptotically stable. For P0 > 1 the endemic equilibrium
emerges in the region, and it is globally asymptotically stable in 
�f(SH ; 0; 0)j0 � SH � 1g.
On the SH{axis, the trajectories approach the disease{free equilibrium.

To prove the global stability of the disease{free equilibrium when P0 � 1, we came out
with a Lyapunov function. For the global stability of the endemic equilibrium we follow
the approach of Y. Li and J.S. Muldowney [18] for a SEIR model. This approach uses the
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Poincar�e{Bendixon property of three{dimensional competitive systems [15, 22], and results
for the stability of periodic orbits [20].

Consider the system
x0 = f(x) (2.2)

where x 2 D � Rn.
It is said that (2.2) is competitive inD i� for some diagonal matrixH = diag(�1; �2; :::; �n),

where each �i is either 1 or �1, H(Df(x))H has non positive o�{diagonal elements for
x 2 D, where Df(x) is the jacobian of the system. Hirsch proved [15], that 3{dimensional
systems have the Poincar�e{Bendixon property. That is, any non empty compact omega
limit set that contains no equilibria must be a closed orbit.

A system is persistent in the sense described in [4], i� each solution starting in int(D),
has the property lim inft!1 x(t) is at a positive distance from the boundary of D.

We say that a system has the property of stability of periodic orbits, i� the orbit of any
periodic solution, if it exists, is asymptotically orbitally stable.

The following theorem is a generalization of the results of Li and Muldowney, and it is
the key to prove the global stability of the endemic equilibrium point E2. Details can be
found in [11].

Theorem 2.2. Assume that n = 3 and D is convex and bounded. Suppose the system
(2.2) is competitive, persistent, and has the propery of stability of periodic orbits. If x0 is
the only equilibrium point in int(D), and it is locally asymptotically stable, then it is globally
asymptotically stable.

It is worth to mentioning, that the global stability of the endemic equilibrium, of an
SIR model with several populations, has been conjectured [5]. We prove this fact for our
two{population problem.

In the dissertation we estimate the basic reproductive number P0 from serological data
for 25 states of M�exico. We �nd values between one and two.

3. Variable human population. In the regions where dengue disease is endemic the
population grows with an anual rate above 2%. Therefore in chapter 2 we assume that the
human population grows exponentially, and has a constant disease rate. We have obtain
the following model:

S
0

H(t) = �HNH � �HSHIV � �HSH

I
0

H(t) = �HSHIV � (
H + �H + �H)IH

R
0

H(t) = 
HIH � �HRH

I 0V (t) = �V (1� IV )
IH
NH

� �V IV

N 0

H(t) = (�H � �H)NH � �HIH ;

(3:1)

where SH , IH , RH denote the number of humans who are susceptible, infectious and
recovered, respectively; IV is the proportion of infected mosquitoes; �H , �V are the e�ective
contact rates of susceptible humans (mosquitoes) with infectious mosquitoes (humans); �H
and �H the birth and mortality rates of the human population; �H the disease death rate;
and �nally �V and 
H are as in section 2.
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Remark 1. In this model we assume that the contact rates are independent of the ratio
between the vector and human populations. Also we assume that the birth rate �H is higher
than the disease death rate �H .

Due to the structure of system (3.1), the corresponding equations for the proportions
SH = SH=NH , IH = IH=NH , RH = RH=NH and IV do not involve NH . Also, the
equations for the fractions SH , IH and RH are redundant since SH + IH + RH = 1. Thus
the 3{dimensional system in the SHIHIV space can be analized separately and the total
population size dynamics can be determined from the di�erential equation for NH . It is
easy to prove that the region 
 de�ned before is positively invariant for the SHIHIV system.

The results are discused in terms of the threshold parameters P0, R and P1 given by

P0 =
�H�V

(�H + 
H + �H)�V
;

R =

8>><
>>:

�H
�H

if P0 � 1

�H
�H + �HI�H

if P0 > 1;

P1 =

8>>><
>>>:

�H�V
(�H + 
H + �H)�V

if P0 � 1

�H�V S
�

H(1� I�V )

(�H + 
H + �H)�V
if P0 > 1;

which govern the existence of the endemic proportion, the increase of the human population
and the number of infectious humans, respectively.

The disease{free proportion E0 = (1; 0; 0) is globally asymptotically stable for P0 � 1.
To show the local stability of this point, we use local analysis for P0 < 1, and the Center
Manifold Theorem [17] for P0 = 1; and to prove the global stability, we use a result on
competitive systems given in [16]. For P0 > 1, there exists an endemic proportion E1 =
(S�H ; I

�

H ; I
�

V ) 2 int(
). Local analysis and Theorem 2.2 prove that all trajectories starting
in 
� f(SH ; 0; 0)j0 � SH � 1g approach E1 when P0 > 1.

To analyze the asymptotic behaviour of the human population and the total number of
individuals in the epidemiological classes, we use Lyapunov functions, the Center Manifold
Theorem and classical results on linear non{autonomous systems [7]. The main results for
model (3.1) are summaized in Table 1. The proofs can also be found in [12].

As can be observed in Table 1, a basic aspect of these results is that the infectious pro-
portion of humans and the total number of infectious humans may have di�erent behaviour.
Thus the infectious proportion of humans may be tending to a positive endemic value, and
the total number of infectious humans may be tending to zero if the total population is de-
creasing (case P0 > 1 and R < 1). On the other hand, the infectious proportion of humans
may be tending to zero, and the total number of infectious humans will grow exponentially
(case R > 1, P0 � 1 and P1 > 1). Similar results for epidemiological models with variable
population have been obtained by several authors, among them, Mena{Lorca and Heth-
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Table 1 Threshold criteria and asymptotic behaviour of system (3.1).

R P0 P1 NH (SH ; IH ; RH ; IV )! (SH ; IH ; RH)!
< 1 � 1 < 1a NH ! 0 (1; 0; 0; 0) (0; 0; 0)
< 1 > 1 < 1a NH ! 0 (S�H ; I

�

H ; R
�

H ; I
�

V ) (0; 0; 0)
> 1 � 1 < 1 NH !1 (1; 0; 0; 0) (1; 0; 0)
> 1 � 1 > 1 NH !1 (1; 0; 0; 0) (1;1;1)
> 1 > 1 > 1a NH !1 (S�H ; I

�

H ; R
�

H ; I
�

V ) (1;1;1)
= 1, �H = 0 � 1 � 1a NH = NH0

(1; 0; 0; 0) (NH0
; 0; 0)

= 1, �H = 0 > 1 = 1a NH = NH0
(S�H ; I

�

H ; R
�

H ; I
�

V ) NH0
(S�H ; I

�

H ; R
�

H)
= 1, �H > 0 < 1 < 1a NH ! N�

H (1; 0; 0; 0) (N�

H ; 0; 0)
= 1, �H > 0 = 1 = 1a NH ! 0 (1; 0; 0; 0) (0; 0; 0)

= 1, �H > 0 > 1 = 1a NH ! N�

H (S�H ; I
�

H ; R
�

H ; I
�

V ) (S
�

H ; I
�

H ; R
�

H)
aThis condition is automatically satis�ed for the values of P0 and R.

cothe [19], Busenberg and van den Driessche [2] for a SIRS model; Busenberg and Vargas
[3], Velasco{Hern�andez [23] for a model of Chagas' disease.

4. Model with two serotypes of virus and variable human population. In chapter
3 we analyze a model for dengue disease with two serotype virus in a variable human
population and constant disease death rate. We analyze the factors that allow the invasion
and persistence of each serotype virus in a human population, as well as the coexistence
levels of both serotypes. The model consists of a non{linear system of nine di�erential
equations that describes the dynamics of the proportions of individuals. Previous models
that incorporate the relations among di�erent serotypes or virus strains are given in [6, 9,
10, 13, 21].

S0H = �H(1� SH)� (�H1
IV1 + �H2

IV2)SH + (�H1
YH1

+ �H2
YH2

)SH

I 0Hi
= �Hi

IViSH � (�H + 
Hi
)IHi

+ (�H1
YH1

+ �H2
YH2

)IHi

R0Hi
= 
Hi

IHi
� �j�Hj

IVjRHi
� �HRHi

+ (�H1
YH1

+ �H2
YH2

)RHi

Y 0Hi
= �i�Hi

RHj
IVi � (�H + 
Hi

+ �Hi
)YHi

+ (�H1
YH1

+ �H2
YH2

)YHi

I 0Vi = �Vi(IHi
+ YHi

)(1 � IV1 � IV2)� �V IVi ;

(4:1)

where i; j = 1; 2, i 6= j.
In (4.1), SH denotes the proportion of susceptible humans to both serotypes; IHi

the
proportion of primary infectious humans with serotype i; RHi

the proportion of recovered
and immune humans from serotype i, susceptible to serotype j; i 6= j; Yi the proportion of
secondary infectious humans with serotype i; IVi the infectious proportion of vectors with
serotype i; �Hi

, �Vi the e�ective contact rates of susceptible humans (mosquitoes) with
infective mosquitoes (humans) with serotype i; 
Hi

the recovery rate from serotype i, �Hi

the disease death rate due to serotype i; and �nally �H , �H and �V are as before.
We assume that primary infections with one serotype may diminish (cross{immunity)

or increase (immune enhacement) the susceptibility of the human host to the secondary
infection. The parameters �i, i = 1; 2, simulate this situation (�i < 1 means cross{immunity
and �i > 1 immune enhacement).



6 LOURDES ESTEVA P.

In this case the region of biological interest becomes


 = f (SH ; IH1
; IH2

; RH1
; RH2

; YH1
; YH2

; IV1 ; IV2) 2 R9
+ with

IV1 + IV2 � 1; SH + IHi
+RHi

+ YHi
� 1 g ;

which is positively invariant under (4.1).
The existence and stability properties of the equilibrium points of system (4.1)are regu-

lated by the parameters

Pi =
�Hi

�Vi
(�H + 
Hi

)�V
i = 1; 2;

P0 =maxfP1; P2g:
Remark 2. R0 =

p
P0 is the basic reproductive number of the disease when there exist

two serotypes in the transmission.
If P0 < 1, E0 = (1; 0; 0; 0; 0; 0; 0; 0; 0) is the only equilibrium in the feasible region 
 and

it is locally asymptotically stable. In the case �i � 1 we prove, using a Lyapunov function,
that it is globally asymptotically stable. When P0 > 1, E0 becomes an unstable saddle
point.

If P1 > 1, there is an equilibrium E1 = (S�H1
; I�H1

; 0; R�H1
; 0; 0; 0; I�V1 ; 0) 2 @
, where only

the serotype one is present. Analysis of the Jacobian of the system reveals that E1 is locally
asymptotically stable if P1 > 1 and

P2 <
P1

1 +
�2
H1

M2

(�1 +M1)(�HM2 + �H2
)
(P1 � 1)

; (4.2)

where

�i =
�Vi
�V

; Mi =

Hi

+ �H
�H

; i = 1; 2:

Numerical evidence suggests that the conditions above imply global stability of the equilib-
rium E1 in the region 
� f(SH ; IH1

; IH2
; RH1

; RH2
; YH1

; YH2
; IV1 ; IV2) : IH1

> 0; IV1 > 0g.
Using Lyapunov functions we prove this under the more restrictive conditions �Hi

= 0,
�i � 1, P2 � 1 and P1 > 1. When (4.2) is not satis�ed the equilibrium E1 is an unstable
saddle.

If P2 > 1, there is an analogous equilibrium E2 = (S�H2
; 0; I�H2

; 0; R�H2
; 0; 0; 0; I�V2 ) 2 @


where only serotype 2 is present. Analogous stability results to the ones of E1 are proved.
The regions of stability of the equilibria Ei, i = 1; 2, in the parameter space P1P2 are

disjoint. They change under variations on the susceptibility to the secondary infection and
disease related death rates.

If the two conditions

P2 >
P1

1 +
�2
H1

M2

(�1 +M1)(�HM2 + �H2
)
(P1 � 1)

P1 >
P1

1 +
�1
H2

M1

(�2 +M2)(�HM1 + �H1
)
(P2 � 1)

(4:3)
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are both satis�ed, then numerical simulations support the existence and stability of a non
trivial equilibrium E3 2 int(
) at which both serotypes remain endemic. When the disease
related death rates �Hi

are equal to zero, we prove analytically the existence of E3.
We �nd that coexistence of both serotypes is possible for a large range of parameters.

As the degree of susceptibility to the secondary infection increases, the system moves from
a regime of competitive exclusion (total cross{immunity) in which the strain with higher
reproductive number dominates, to a regime of coexistence, in which both serotypes have
an increasingly coupled behaviour.

5. Vertical transmission and interrupted feeding in the vector population. In
the fourth and last chapter we analyze the impact of vertical transmission and interrupted
feeding on the dynamics of the disease. The model is given by the following system:

S0H = �H(1� SH)� (�H1
IVm + �H2

IV )SH

I 0H = (�H1
IVm + �H2

IV )SH � (�H + 
H)IH

I 0Vm = q�V (IVm + LV + IV ) + �V IH(1� IVm � LV � IV )� (�V + 
Vm)IVm

L0V = 
VmIVm � (�V + 
V )LV

I 0V = 
V LV � �V IV

(5:1)

in the region


 =
�
(SH ; IH ; IVm ; LV ; IV ) 2 R5

+ : 0 � SH + IH � 1; 0 � IVm + LV + IV � 1
	
:

Here IVm is the proportion of mosquitoes that have acquired the virus and can trans-
mit it mechanically; LV the proportion of infected mosquitoes that are in the incubation
period (latent); IV the proportion of infectious mosquitoes; 1=
Vm is the average time of
permanence of a mosquito in the class IVm before it becomes latent (this period can be very
short); 1=
V is the latent period; q is the proportion of newborns from an infected mosquito
that is infectious. The other variables and parameters are as before.

We prove the existence of two equilibria: the disease{free equilibrium E0 = (1; 0; 0; 0; 0),
and the endemic equilibrium E1 = (S�H ; I

�

H ; I
�

Vm
; L�V ; I

�

V ) 2 int(
). Using results on M{
matrices we show the local stability of the disease free equilibrium when the parameter

P0 =
F�V

p(�H + 
H)
(5.2)

is less than one, where

F =

�
�H1

+

Vm
V

�V (�V + 
V )
�H2

�
1

�V + 
Vm
and p = 1� q:

We �nd a Lyapunov function to show the global stability of this equilibrium when �H1
<


V
�V + 
V

�H2
and P0 � 1. To prove the local stability of the endemic equilibrium for

P0 > 1, we use a Krasnoselkii sublinearity technique as was done in [14] for a model with
subpopulations.
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We �nd that vertical transmission is more important that the e�ect of interrupted feeding
on the dynamics of the disease. We also �nd that vertical transmission a�ects the dynamics
of the infectious vectors more than the dynamics of the infectious humans. We conclude
that vertical transmission is an important factor in the maintenance of the virus in regions
where the human density is low.
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