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1 Basics of Multiple Alignment

Here is what you will learn in the following sections: Multiple Alignment
will be defined, we will discuss the straightforward approach to calculating
an “optimal” one, and you will understand that, unlike pairwise alignment,
even an intelligent order of computation is not enough to finish the calculation
in reasonable time.

1.1 What is a Multiple Alignment ?
[ Whatls. ] What is a multiple alignment 7 The short answer is this -

VTISCTGSSSNIGAG-NHVKWYQQLPG
VTISCTGTSSNIGS--ITVNWYQQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---
VSLTCLVKGFYPSD--IAVEWESNG--

That’s a multiple alignment. 8 fragments from immunoglobulin sequences
are displayed together. Their alignment highlights conserved residues (one
of the cysteines forming the disulphide bridges, and the tryptophan are no-
table), conserved regions (in particular, "Q.PG” at the end of the first 4 se-
quences), and more sophisticated patterns, like the dominance of hydrophobic
residues at fragment positions 1 and 3. The alternating hydrophobicity pat-
tern is typical for the surface beta-strand at the beginning of each fragment.
Indeed, multiple alignments are helpful for protein structure prediction.

The alignment can also enable us to infer the evolutionary history of the
sequences. It looks like the first 4 sequences and the last 4 sequences are de-
rived from 2 different common ancestors, that in turn derived from a "root”
ancestor. Indeed, we've got 4 fragments from the so-called variable regions,
and 4 fragments from the constant regions of immunoglobulins. (Don’t be
fooled by the term "variable”. The sequences of the variable regions are
about as conserved as the sequences of the constant regions, except for their
antigen-binding subregions, which are composed of just a few amino acids
each, and give the antibody its specificity.) However, it is necessary to in-
spect longer fragments than shown here, if you want to make phylogenetic
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observations that are statistically significant. In this chapter, we will not look
into phylogenetic analysis, or statistical significance in general; they deserve
chapters of their own !

Exercise 1 [05,0pt.] Find out more about the role that hydrophobic
and hydrophilic residues play in protein structures. Also, do you think the G
at the end of all but one fragment is a residue conserved over time ?

Exercises are marked with numbers that are (hopefully !) proportional to their
difficulty. Those that are clearly optional are marked by the acronym ’opt’. Also,
an appended symbol "*’ marks the essential exercises, "M’ marks more mathemat-
ical depth (relative to no depth at all :-), "B’ marks more biological depth, "A’
marks assignments you are asked to submit to your instructor, and an appended
letter 'P’ marks things you can write a program for (preferably in MOO-code, so
that you can demonstrate it in our electronic classroom. Contact the author at
fuellen@dali.mathematik.uni-bielefeld.de before you start coding ! ).

In case you're wondering about the '/ Whatls. | at the beginning of this
section: I've provided acronyms so that you can clearly specify which part of the
text you’re talking about in the electronic classroom. This is paragraph ” Whatls-
6” (the sixth paragraph in the ”Whatls” section), and no matter whether the
others studied the hypertext or the postscript version, they will all find it.

[ FormalDef ] Computer scientists and mathematicians prefer a longer,
more formal answer to our question "What is a Multiple Alignment 77, as
follows:

Let’s imagine we’ve got k sequences, sq, ..., sk, each sequence consisting
of characters taken from an alphabet of letters, denoted A (see chapter 1).
A can be { A,C,G,T} for DNA sequences. Let’s say k must be at least 2,
since aligning zero or one sequences just doesn’t make sense. (If you're a
good observer, you will note that most of the chapter doesn’t make sense for
2 sequences either. Well, it makes certain sense by boiling down to useless,
yet obviously true observations for the pairwise case. However, in practice,
multiple alignment is never done for less than 3 sequences.) Next, we need

»_»

to insist that A does not contain the special character , which we want to

reserve for denoting the gaps. Then we can write our alignments using the
alphabet A’ which is A plus the gap character ”-". A’ can be { A,C,G,T,~}
for DNA sequence alignments. We define -

A Multiple Alignment of k sequences is a rectangular array, consisting of
characters taken from the alphabet A’ that satisfies the following 3 condi-
tions:



1. There are exactly k£ rows.
2. Ignoring the gap character, row number ¢ is exactly the sequence s;.
3. Each column contains at least one character different from ”-7.

If the sequences are written as

S1 = 81’1 81’2 . 81’|31|7
S9 = 52’1 52’2 e 52’|S2|,
Sk = Skl Sk2 ... ‘Sk7|5k|’

then the multiple alignment will be written as

r ! !
S1= S1p S12 -0 Syap
g ! X A
Sg = S0 S22 e Sy Ap
[ ! ! !
Sp = Sk‘,l Sk‘,? Sk,|A|'

Exercise 2 [00] Can you imagine what |A| is, before reading on 7

Some of the s are gaps, and ignoring them, the rows s{ become the
original sequences s;, like sequence No. 8 from the example alignment:
Before:
s4=VSLTCLVKGFYPSD--IAVEWESNG- -
After:
ss=VSLTCLVKGFYPSDIAVEWESTN G
Depending on how many gaps we inserted, the multiple alignment array

has got a particular width, which we have called |A] .

[ Compare ] Our next step is to compare multiple alignments. Our defini-
tion tells us what a multiple alignment is, but not whether the one from the
beginning of the chapter,

VTISCTGSSSNIGAG-NHVKWYQQLPG
VTISCTGTSSNIGS--ITVNWYQQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---
VSLTCLVKGFYPSD--TAVEWESNG--



or the following one,

VTISCTGSSSNIG-AGNHVKWYQQLPG
VTISCTGTSSNIG--SITVNWYQQLPG
LRLSCSSSGFIFS--SYAMYWVRQAPG
LSLTCTVSGTSFD--DYYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNW--YVDG
ATLVCLISDFYPG--AVTVAW--KADS
AALGCLVKDYFPE--PVTVSW--NS-G
VSLTCLVKGFYPS--DIAVEW--ESNG

or, maybe, even this candidate

VTISCTGSSSNIGAG-NHVKWYQQLPG
VTISCTGTSSNIGS--ITVNWYQQLPG
LRLSCS-SSGFIFSS-YAMYWVRQAPG
LSLTCT-VSGTSFDD-YYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---
VSLTCLVKGFYPSD--TAVEWESNG--

is the "better” alignment. What is "better”, anyway 7 We need a cost/weight
function, and a really simple way to start is to evaluate the costs/weights
column by column, like this:

ColumnCost = 26.

n Q9 e - e

G

I have not made up the value 726”7, but I've used the "unit costs” from
chapter 1 about pairwise alignment, summing up all the costs of all possible
pairs of letters, i.e. the sum of the unit costs of the pairs (1,2), (1,3), (1,4), ...,
(1.8), (2,3), (2,4), ..., (2,8), (3,4), (3,5), ..., ..., ..., and (7,8). In general, any



cost /weight scheme could be used, it just needs to map pairs of characters
to a numeric value. ”Unit costs” is just a very convenient example.
Exercise 3 [00] Using unit costs, recalculate 726” for yourself.

Exercise 4 [10A] Use the 250 PAM similarity matrix to calculate the
cost of the column. To do this, convert the PAM similarity scores into costs.
For any pair of amino acids, calculate 17 minus the PAM score of that pair.
(177 is the largest value in the standard PAM similarity matrix. This is how
the MSA software does the conversion, see below.) For the comparison with
77 e.g. pairs like (4,-), use a cost of 20. The 250 PAM matrix is available at
http://www.techfak.uni-bielefeld.de/bed/Curric/PrwAli/Matrices/pam250.mat.

In this text, our goal is to minimise the total cost, or distance, for the
alignment, so smaller is better. In contrast, sometimes people aim to max-
imise similarity. These people can use the PAM similarity matrix directly in
their calculations.

[ ColumnsFirst ] A column is just a generalisation of an edit opera-
tion as introduced in Chapter 1. Indeed, we can view the operations ”Re-

place/Match”, "Insert”, and "Delete” as pairs of characters, i.e. ( Sid ),
S

( 5_ ) and ( Sl ) , where s;; and s;; € A. Therefore, the edit opera-
5l
tions can be represented by columns with 2 entries. The replacement of one

character by a different character is also called a mismatch.
Exercise 5 [00] Not each column with 2 entries represents an edit op-
eration, though. Which one does not ?

Given a cost/weight schema w mapping pairs of characters to a numeric
value, we can calculate a cost of the overall alignment, by summing up the
column costs:

c= Z Z 217 _7,

=1, AL (6,5) i<

where w(—,—) = 0, |A] is the width of the alignment, and {(z,7),2 < j} is
the set of all pairs, where the first index 7 is smaller than the second index j.
It goes without saying that 7,7 are larger than zero, and less than or equal
to the number of sequences, k.



Our cost model is a simple example of what is known as a sum-of-pairs
cost, abbreviated to SP-cost, and we can think of the pairs as being ”pro-
jections” of the column, in the same way as objects in a cubic lattice (3
dimensions) can be projected by light sources, forming shadows on the 6
different faces of the cube (2 dimensions). ”Sum-of-pairs” is just one way of
scoring. We'll touch another one later.

Exercise 6 [05P, opt.] In the "unit cost” model, calculate the simple
SP-cost of our example alignment from the beginning of the chapter.

[ PairsFirst ] Equivalently, we can obtain the simple SP-cost of an align-
ment by calculating all pairwise costs in the same way as we did in chapter 1
(i.e., by looking at the number of replacements/matches, insertions and dele-
tions), and then summing up over all pairs of sequences:

d= 2 2 wlsins)

(6,7),i<7 1=1,.0, | Al

Exercise 7 [05P, opt.] Again, calculate the SP-cost of our example
alignment from the beginning of the chapter, according to the last equation.

I hope you obtained the same results for the last 2 exercises | We've
just rearranged the order of summation, so this cost is the same as the
one calculated before. This rearrangement is possible because we’ve got a
cost/weight scheme w defined on pairs of characters, and nothing more.

In most cases, only one of the 2 ways of summation can be used to express
a particular cost model, and this makes a standard formulation of multiple
alignment a little difficult. Some approaches are best cast "columns first”,
whereas others can only be cast "pairs first”.

Exercise 8 [10A] Imagine you want to calculate the shortest common
supersequence, 1.e. the shortest sequence to which all sequences can be aligned
without mismatches. Which cost/weight scheme can you use 7 Hint: a)
Despite its name, the shortest common supersequence cannot be shorter
than the longest of the sequences. b) Cast the problem ”columns first”, and
imagine how the cost of a column should be defined. If you do it right, there
will be a simple relation between the cost of the whole multiple alignment
and the length of the supersequence. (cf. [Kec93].)



Exercise 9 [05A] Come up with a cost model that must be treated
"pairs first”. Hint: In the following alignment, is it fair to treat all 5 gaps as
seperate entities 7

GNAVSNS
GNANANS

Indeed, we will concentrate on the ”pairs first” approach, and in the
next section, a pair of rows will be called a projection of the whole multiple
alignment, like a pair of letters is a projection of an alignment column.

Now we're ready to talk about ”Optimal Multiple Alignments”.

An Optimal Multiple Alignment is an alignment with minimum overall
cost, or maximum overall similarity. We’ll denote the cost of the optimal
alignment of sequences sy, s2,..., s, by d(s1,s2,..., k).

1.2 The Dynamic Programming Hyperlattice.

[ Lattice ] Recall the "path through a distance lattice/matrix” concept from
Chapter 1. For the case of 3 sequences, every alignment can be cast as a
unique path through a 3-dimensional lattice (See Fig. 1 for an example).

Figure 1: Alignment Path for 3 Sequences.

S
A
VSN - S
- S N A -
A - - - AS
N
S
A% S N S
Start
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We can denote a path through a lattice in a simple way. For each node
visited, we list, component by component, the distance from the starting
point in the bottom left (i.e. from the source (0,0,0) of the lattice). For
example, the path in Fig. 1 is written down as (0,0,0), (1,0,0), (2,1,0), (3,2,0),
(3,3,1), (4,3,2). As you can see, the distance from the starting point is the
number of letters already aligned. For example, column 4 of the alignment
corresponds to node (3,3,1). Indeed, 3 letters from the first and second
sequence are aligned at that point, and one letter from the third.

You can create alignment paths and 3-dimensional lattices, and rotate
them in the window of your WWW-browser, using our very own Java-based
"Multiple Alignment Visualization Tool”, at http://oleander.techfak.uni-
bielefeld.de:8080/java/biomoo/visu.html .

Exercise 10 [10, opt.] Draw the hyperlattice for the following align-
ment, and write down the alignment path.

GN-S
GNA-
-N-S

Now I'd like to invite you to relax and imagine an 8-dimensional hyperlat-
tice... In our example from the beginning of this chapter, we're first walking
straight ahead into the lattice, following the main diagonal. Starting again
at node (0,0,0,0,0,0,0,0) we move to node (1,1,1,1,1,1,1.1), and so forth, until
we’ve reached the node (14,14,14,14,14,14,14,14). The next three nodes are as
follows, (15,14,14,14,15,14,14,14),
(15,14,14,14,16,14,14,14), and (16,15,15,15,17,15,15,15).

Exercise 11 [02*] And the next node is 77

Exercise 12 [05M, opt.] Using the convention that for any letter L
imA 0-L=— and 1 -L = L, can you cast an alignment column as the
combination of a vector of binary numbers e and the letters at the incoming

edges of a node in the lattice 7 (cf. [Wat89]).

In Fig. 1, a three-dimensional lattice is displayed, with sequences starting
at the bottom-left end. If you imagine light sources on the top, front, and
right-hand side of the lattice, "shadows” of the alignment will be projected
to the opposing faces (walls). In Fig. 2, only the light source on the right is
“on”, projecting the path onto the face on the left. In Fig. 3, all light sources

11



Figure 2: Projection of the Alignment from the Right-Hand-Side.

Start

are "on”. (The light sources should ideally be much farther away from the
lattice, so that the shadows are projected without distortion.)

[ ProjAndGaps ] We've already dealt with the projections of a column;
here the whole alignment path is being projected ! The projections of a
multiple alignment to pairwise alignments will play an important role in
speeding up the calculation of the optimal one.

The projection of an alignment may be ”shorter” than the original one.
For example, the alignment of

G---SNS
GN----8
GNAVSNS

projected in the direction of the first 2 sequences, is as follows,

G-SNS
GN--S

Aligned gaps are ignored ! This is exactly what happens if the alignment
path progresses in the direction of the projection; there is no shadow left !
For example, if the alignment path in Fig. 3 at first progresses towards
the right of the hyperlattice, in the direction of the first sequence, and is

12



Figure 3: All 3 Pairwise Projections of the Alignment
L2

-~

Start

L3
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perpendicular to the other 2 sequences, the projection by light source L1 1s
not a line, but a single point. And indeed, ”V” is aligned to 2 gaps.

Exercise 13 [02*A] Can the projected path of the optimal multiple
alignment ever be less costly than the optimal pairwise alignment 7 Explain
why, or why not.

1.3 Calculation of a Multiple Alignment by Standard
Dynamic Programming.

[ CalculDynPgr ] In a straightforward extension of the pairwise case (see
chapter 1) an optimal multiple alignment can be calculated by dynamic pro-
gramming. Let us reconsider the pairwise case. Here, we can visualize dy-
namic programiming as a calculation that visits every node in a 2-dimensional
lattice, in a way that obeys the order of dependencies between the nodes, as
indicated by the arrows in Fig. 4.

The lattice is the 2-dimensional equivalent of the hyperlattice introduced
earlier, and each lattice node can be identified with the corresponding posi-
tion in the "distance matrix” discussed in chapter 1. Once the calculation
is finished, we have assigned a cost to each node. This cost is the minimum
cost of aligning the two sequences, here VSN and SNA, up to the point defined
by the node.

As in Fig. 1, but in contrast to chapter 1, we’ve arranged the sequences
such that the calculation of the alignment costs starts in the bottom-left
corner, and not the top-left corner. In this setting, one way to obey the
order of dependencies is the following: Start bottom-left, then move to the
right until the bottom row is finished, then visit the node marked by an
asteriks (*), move to the right as before, etc.

The arrows in Fig. 4 denote the dependencies, e.g. the calculation for the
node labeled "current visit” depends on 3 other nodes; we are looking back
at 3 possible edges from which we can reach it. These, in turn, correspond
to either a replacement /match (diagonal arrow), or the introduction of a gap
in one of the sequences. Which of these 3 "edit operations” gives rise to the
minimum overall cost for reaching the current node, and thereby suggests
the best path to it, i.e. the best alignment of the sequences up to this point,
VS and SN ? We have to look at

1) the weight of the edit operation,

14



Figure 4: Looking Back at Previously Visited Nodes.
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2) the costs that incurred before, for reaching the node to which the arrow
is pointing.

Then we take the minimum possible sum of 1) and 2), and store it in the
current node, just like the costs that incurred before were stored in previously
visited nodes. Following the order of dependencies guarantees that these costs
are always known. Note that only the previous costs are important, not the
paths by which they were achieved. The alignment is spelled out by tracing
back, i.e. by starting in the top-right corner, and following the nodes from
which the minimum cost was contributed while taking the minimum possible
sum of 1) and 2).

Extending this technique to 3 or more dimensions leads to formulas very
much like the formulas from chapter 1. We’ve just got more nodes to look
back, e.g. 7 nodes for three sequences. Correspondingly, the minimum needs
to be taken from 7 possible values (see Fig. 5).

Exercise 14 [10M, opt.] If you've done the last exercise in the "math
track”, you can cast the recursive (dynamic programming) formula in a very
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Figure 5: Looking Back in the Case of 3 Sequences.

1 current
visit,

5
/4
7

elegant way, taking the minimum, over all vectors of binary numbers e #
(0,0,...,0), of an expression dependent on e. (cf. [Wat89]).

Whether we investigate the formulas, or just visualize all the nodes of
a, say, 8-dimensional hyperlattice, we can easily see that our calculation is
pretty much time- and space-consuming !

In the next subsection, we will formalize ”pretty much”, and then we’ll
look at a technique to cut down the number of nodes that need to be visited
to calculate the alignment.

Exercise 15 [10, opt.] Imagine that you want to use a hill-climbing
strategy like Simulated Annealing, or a Genetic Algorithm, to find minimum-
cost alignments. Which obstacle(s) need to be overcome ?  (See Chapter 5, at
http://www.techfak.uni-bielefeld.de/bed /Curric/ProtEn/contents.html, for an
introduction to Genetic Algorithms. Cf. [Vin91], p.3).

1.4 Computational Complexity of Multiple Alignment
by Standard Dynamic Programming.

[ ComplexityDynPgr ] The basic argument for the time analysis of standard
dynamic programming is that each node in the k-dimensional hyperlattice
is visited once, and therefore the running time must be proportional to the
number of nodes in the lattice.

Looking at the 3-dimensional lattice we've used for visualisation, this
number is the product of the lengths of the sequences. The important ques-
tion remaining is thus: How many steps does the algorithm “rest” at each
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node 7 Dynamic programming organizes the visiting of nodes in such a way
that we just need to “look back” one single step, at the nodes that we’ve
visited before, to look up the values we need for calculating the minimum.
(See Fig. 4 and 5.) So the time we spend for retrieving the minima and cal-
culating the sum does not depend on the length of the sequences ! However,
it depends on the number of sequences. We've had 3 values (Fig. 4) for 2
sequences, 7 values (Fig. 5) for 3 sequences, and, you may have guessed it,
15 values for 4 sequences. This goes up exponentially, just like the 28 — 1!
Using our reasoning, one can formally prove that the running time is

o I s
=1,k
where O(...) denotes proportionality.

All this is bad news ! If the proportionality factor is 1 nanosecond, then
for 6 sequences of length 100, we’ll have a Tunning time of 2% - 100° - 1072,
that’s roughly 64000 seconds. Just add 2 sequences, and the running time is
2.6 - 10? seconds !

Exercise 16 [02A] What’s the running time for 10 sequences of length
200 7

Even worse, let’s have a look at the memory space we're using... If we
want to trace back the alignment, we need to store the whole lattice, a
datastructure the size of a multidimensional skyscraper. In fact, space is
the No.1 problem here, bogging down multiple alignment methods that try
to achieve optimality. Furthermore, incorporating a realistic gap model (see
chapter 1), we will further increase our demands on space and running time,
although there is a reasonable gap cost model that does not involve too many
excess computations, see [Alt89].

1.5 Some Bibliographic Hints.

Some introductory texts on multiple alignment are the following. Chapter 10
from the new book by Michael Waterman [Wat95] gives you a good overview,
including some more mathematics. [Wat89] is an older introductory text
by the same author. Less mathematical, but still from the viewpoint of
Computer Science is the text [Mye91]. Some papers with a nice introductory
section are [GKS95], [Gus93], and [Kec93]. Reviews from the biologists’
perspective are centered around heuristic methods; see section 3.5 for more
hints.
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Two approaches to Multiple Alignment that are not treated here are the
use of Hidden Markov Models ([BCHM94]), [KBM+94], [Edd95]) and Gibbs
Sampling ([LAB+93]); both are based on statistical methods. The former is
also discussed in [Wat95].
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2 The Carrillo-Lipman Method for Optimal
Multiple Alignment

Here is what you will learn in the following sections: You will understand
geometrically the idea of using pairwise projections for obtaining bounds on
the "volume” the dynamic programming algorithm needs to explore. Then
you will be shown the math, and correlate both forms of presentation. (In
section 3.4, you can apply your knowledge to a real-life example. In any case,
you may read and explore section 3, "Heuristic Alignment Procedures and
Examples”, in parallel.)

2.1 A Visual Explanation of the Carrillo Lipman Bound.

[ CLVisual ] Recall the dynamic programming hyperlattice introduced in the
last sections. If many sequences are to be aligned, it becomes too large, so
that we can no longer visit every node in it. Do we really need to 7 Do we
need to care about nodes close to the extreme ends of the lattice, like E1,
E2, E3 or E4 (Fig. 6) 7 We're driven to the extreme ends if we introduce a
lot of gaps; the alignment path of

AAAACCCCCC----
----CCCCCCTTTT

is 4 steps away from the main diagonal, because every gap introduced in the
beginning moves us one step away.

Exercise 17 [00] How many steps away from the main diagonal was the
standard example from Chapter 1.2, Pairwise Alignment via Dynamic Pro-
gramming, see http://www.techfak.uni-bielefeld.de/bed/Curric/PrwAli/prwali.html
>

Working with the "sum-of-pairs” cost model introduced in the last sec-
tion, the technique presented in the following can be very useful if the se-
quences are rather similar, and the cost for introducing gaps is not too low.
Then, the optimal multiple alignment does not look anything like

In other words, we can expect a priori that the optimal alignment path is
contained in a ”polyhedron” close to the main diagonal (Fig. 7, bottom.
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Figure 6: Extreme Ends of the Hyperlattice.

Es

Es

Es4

Eo

Start

Here, a polyhedron is a solid formed by plane faces, or more complicated
2-dimensional surfaces. For better visualisation, the polyhedron’s shadows
are displayed, together with a tube symbolizing the optimal alignment path.)
While visiting a node and looking for the minimum along all the incoming
edges, we can ignore those edges that are "coming from outside the polyhe-
dron”, as in the top part of Fig. 7. On its top-left side, the cube is "covered”
by the polyhedron. The edges 1, 2, 3, 6 and 7 are coming from the inside, and
edges 4 and 5 can be ignored (and are therefore not labeled in the figure).

The question is, how can we obtain such a polyhedron 7 Imagine we’ve got
a heuristic alignment that is a path hopefully close to the optimal alignment.
If we knew that the optimal is max. 30 units away, we could establish a
simple polyhedron of radius 30 around the heuristic alignment, and search
for the optimal inside this polyhedron. But how are we to know ?

In fact, we will not make such simple assertions. Here is what we will
do. We will calculate a "polyhedron” consisting of those nodes in the lattice
that are traversed by at least one path which has, in all of its projections, a
cost below a specific bound. We will calculate one bound for each possible
projection (i.e. each possible pair of sequences). For 3 sequences, we will
calculate 3, and for 4 sequences, we will calculate 6 upper bounds. We will
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Figure 7: Cutting down the Exploration of the Dynamic Programming Lat-
tice.
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show that these bounds are obeyed by the projections of the optimal multiple
alignment, so that it is indeed pointless to consider nodes through which only
paths go that have higher costs in some projection.

[ GetBounds ] To obtain the bounds, we will look at the pairwise pro-
jections of a heuristic alignment, and of the hypothetical optimal multiple
alignment. (For the moment, we’ll behave as if the optimal multiple align-
ment is known. However, we’ll make no use of this knowledge in the final
equalion. )

So let’s fix a heuristic alignment, and let’s say, we're projecting in the
direction of the sequences 1 and 2. We do not know how close the two
paths of the projected heuristic and the projected optimal alignment are.
Even worse, for the original paths, we could at least say that the heuristic
alignment is more costly than the optimal one (otherwise the optimal one
was misnamed). For the projected paths, this does not need to hold true;
imagine the heuristic starts with aligning the pair (1,2) optimally, and then,
in some way, adds the other sequences one by one. The projection of this
heuristic multiple alignment to the first 2 sequences is the optimal pairwise
alignment, and the projection of the optimal multiple alignment can only be
more costly (otherwise, the optimal pairwise one was misnamed). In other
words, aligning multiply puts constraints on the pairwise projections, they
are no longer independent, they all need to fit together, forming the multiple
alignment in a consistent way.

If you are pedantic, you may have noticed that whenever we said "more
costly” in the preceding paragraph, what we really meant was "more costly
or costing the same”. To simplify our presentation, we’ll continue to use this
convention.

Exercise 18 [05A] For 3 short sequences, make up an artificial example
where the projection of the optimal multiple alignment in the direction of
the pair (1,2) is more costly than the optimal pairwise alignment.

Let us now visualize the 3 types of costs we're dealing with for each of the 6
pairs / projections that are possible in the 4-sequence case, as in Fig. 8. These
are the costs of the projected heuristic (normal line), the projected optimal
(dashed line), and the pairwise optimal alignment (borderline between the
grey areas), each of them for the pairs (1,2), (1,3), (1,4), (2,3), (2,4) and
(3,4).

[ FakeUppBnd ] For each column, pair by pair, we will soon establish an
upper bound on the grey area (dark grey and light grey taken together), i.e.
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Figure 8: Costs of the (Projected) Pairwise Alignments for 4 Sequences.

Tproj. heuristic

cost | ++++ ++++
e+ A+ | ++++
++4++ |+t i, O 2 - S .
) proj. optimal
______ Nl

airw. optimal

(1,2) (1,3) (1,4) (2,3) (2,4) (3.4)

the area below the projected optimal alignment cost. Our bound will consist

of
o the cost of the projected heuristic alignment, plus
e a "compensation term”, defined below.

The areas filled with minus symbols denote the "defect” of the projected
optimal in comparison to the projected heuristic alignment; only for pairs
(1,4), (2,3), and (3,4) the projected heuristic is more costly, i.e. is an upper
bound. For these cases, we’ve marked the "surplus” by rows of plus symbols.

Let’s start with the pair (1,3). How can we arrive at an upper bound
for its corresponding projected optimal alignment 7 Is there a never-failing
”compensation” that could be added to the cost of the projected heuristic
alignment, i.e. added to the area marked by vertical lines 7 The critical
observation here is that the areas filled with plus symbols, summed up over
all pairs, are larger than the areas filled with minus symbols.

Exercise 19 [00*] Recall why this must be the case.

We can conclude the following: If for one pair there is a defect (like the
2 rows of minus symbols in pair (1,3)), then there is a ”compensation” that
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is larger than the defect. The ”compensation” is the sum of the surpluses,
minus the defects taken over all remaining columns, if there are any.
Therefore, adding the ”compensation” to the projected cost of the heuris-
tic (marked by vertical lines), we have achieved an upper bound on the grey
area, as shown in Fig. 9. In our example, the "compensation” is 5 rows of
plus symbols (9 layers of ”surplus” minus 4 layers of "defect” in columns
other than (1,3) ). Indeed, it is larger than the (1,3)-"defect” of 2 rows of

minus symbols, as shown in Fig. 8.

Figure 9: Adding the "Compensation” to the Costs of the Projected Heuristic
Alignment

cost

bound
proj.
optimal

proj.
heuristic

(1.3)

Exercise 20 [05] Calculate the upper bound for the pair (2,4).

It’s easy to see that our argument is true for the pair (1,2) as well; it
is irrelevant whether the projected heuristic and the pairwise optimal have
the same cost, or not. (Recall that same cost does not imply identity of the
alignment path.) In the figure, 9 layers of plus symbols minus 3 layers of
minus symbols are larger than 3 layers of minus symbols.

For the pair (1,4) the bound holds as well. Here we add a ” compensation”
of one layer (7 layers of plus symbols, 6 layers of minus symbols) to the cost of
projected heuristic. The ”compensation” may actually be negative, if there
is no defect to be covered. This is the case for pair (2,3).
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Exercise 21 [05] Calculate the upper bound for the pair (2,3).

[ UppBnd ] Things are looking good, but we're not ready yet; in fact, we're
pretending that we’re aware of the cost of the optimal alignment; we’ve been
playing around with a hypothetical value !

There is a quick fix to this; while calculating the ”compensation”, let’s
just add more layers of plus symbols as shown in Fig. 10, calculating the sur-
plus ”in relation to the cost of the optimal pairwise alignment” instead of ”in
relation to the projection of the unknown optimal multiple alignment”. This
means all the area between the optimal pairwise alignment and the projected
heuristic multiple alignment is defined as surplus. Our change has the extra
"benefit” that there are no negative contributions to the "compensation” any
more.

Figure 10: Getting Rid of the References to the Projected Optimal Align-

ment.

cost

_______

~— — — — = .

+4 4+

+ 4+ 4+
+4++

pairw. optimal

(1,2)

(1,4)

(1.3) (2.3) (24) (34

In other words, we’ve just replaced the references to the projections of the
optimal alignment with references to the pairwise optimal alignments. Their
costs are not only known, but well-known as a lower bound to any alignment
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that could be done pairwise. In the case of pair (1,3), the ”compensation”
now consists of all the rows of pluses in Fig. 11, and if you add that area to
the cost of the projected heuristic in column (1,3), you’ll see in Fig. 12 that
it compensates well, too well ! In realistic examples the plus symbols can
outnumber the minus symbols to a high degree as well, and the search for
tighter bounds is still going on !

Figure 11: The New "Compensation” Term for Pair (1,3).

proj. heuristic
cost J++++ +4+++
FH++ |ttt 4+
F+H++ |+ | I+ +++
proj. | | _____ O T e T S e A
optimal - ++++ | H+++ |+ ++++
++++ | ++++ | TEEH | AEAA
++++
o+t

++++

++++
T4+ airw. optimal

++++

(1.3)

Exercise 22 [10A*] Calculate the new upper bounds for the pairs (1,3)
and (2,4).

Exercise 23 [10A] Calculate the new upper bounds for the pairs (1,2)
and (2,3).

[ Intersect ] Having accomplished bounds on the optimal alignment in all
its pairwise projections, we have established a sel of constraints on the path
of the optimal alignment through the whole hyperlattice. Only paths that
have, in every projection, a cost lower than the bound can be a candidate
for an optimal alignment path; only nodes visited by at least one of these
paths need to be considered during the calculation of the minimum that is
part of the dynamic programming step. In other words, we do not need to
look back at the edges coming from the other nodes, as shown in Fig. 7.
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Figure 12: The Carrillo-Lipman Bound for Pair (1,3).
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Figuratively, the 2-dimensional strips on the faces of the lattice are "pro-
jected back”, and intersected. In Fig. 7(bottom), light sources from the top,
right, and front projected shadows of the polyhedron onto the wall. This
time, imagine the opposite process, i.e. a back-projection being done by light
sources from the bottom, left, and back side shining through the areas outside
the strips on the wall. Then the darkest region (not illuminated by any of
the 3 light sources) is the 3-dimensional polyhedron displayed in the middle
that must contain the optimal multiple alignment.
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2.2 Mathematical Derivation of the Carrillo-Lipman
Bound.

[ CLMathUppBnd ] We will now follow up on the visual presentation of the
last section, and we need to introduce some notation first.

(The following section is not needed for the rest of the chapter; neverthe-
less it would be a pity if you missed it :-)

Given sequences sy, ..., sk, and a cost function ¢, let A denote any align-
ment, A° the optimal one, and A" a heuristic one. Their costs are ¢(A),
c(A°) = d(sy,...,s;), and ¢(A"). The projection of a multiple alignment A,
in the direction of the sequences s; and s; is written as Aj; ;. Three [requent
terms in the following text are ¢(A°;;), the cost of the (7, 7)-projection of
the optimal alignment; d(s;, s;), the cost of the pairwise optimal alignment;
and c(Ah|2-7j), the cost of the projected heuristic alignment. Our goal is to
find for any fixed pair (p,q),p < ¢, a bound on ¢(A°, ), in terms of all the
other d(s;,s;) and c(Ah|Z-7j).

Let us express some of our observations of the previous subsection in
mathematical terms. First of all, by optimality of d(s1,...,s),

o(A™) —d(s1,...,s1) > 0.
Since we're working in the SP-cost framework, this is equivalent to
> (el A) = e(A%)) 2 0.
(1)<

This is the formal account of the fact that, in Fig. 8, "the areas filled with
plus symbols, summed up over all columns, are larger than the areas filled
with minus symbols.”

The equation can be rearranged to

o (elAM) = e A%) |+ (A ) — e(A%,) 2 0,
(4,7)2<g
(:.9)#(p2)

or
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S (e(AP) = e(A% ) | + (AP > e(A,,).
(i,',i<j

(4,0)#(p:9)

In Fig. 8 and 9, (p, ¢) has been chosen as (1, 3). Then, the left-hand-side of
the above equation is the bound in Fig. 9, and the right-hand-side is the grey
area to be bounded. The bound in Fig. 9 consists of the ”compensation”,
and the term c(A", ).

By optimality of d(s;, s;),

(A%ij) 2 d(siys5),  for any i,j.

This can be put in use in the former equation, yielding the Carrillo-Lipman

bound:

S (AP = dlsis)) |+ e(APg) = e(A°),),
(2,4) i<y

(4,4)#(pya)

for any (p, q) we may have selected.

On the left side, we can find the new ”compensation” (as in Fig. 11) plus
[ Ah
C(A |p7Q)'

Some authors define an upper and lower bound as follows,

U= Z C(Ah|¢,j)7

(1:),i<i
L= Z d(Si,Sj).
(1:4),i<j
(This upper bound U should not be confused with the "upper bounds”

that we’ve been talking about; these have been the Carrillo-Lipman bounds !)
The Carrillo-Lipman bound now looks like

U—L+d(sp,s5) > c(A%,)-
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This equation looks easier, but the term d(s,, s,) now appears in two places
in the equation.
Exercise 24 [00M] Where ?

[ CLMathIntersect | Let X, ; be the set of paths which have, in projection
(1,7), costs smaller than or equal to U — L + d(s;, s;). (We've just "recycled”
the indices © and j. They are now used instead of p and ¢ that are no longer
needed. This is a kind of standard "procedure” among mathematicians, but
may be confusing to others. You will find it in the original papers, too.)
Exploiting the bounds, pair by pair, we want to consider only paths through
the hyperlattice that obey the Carrillo-Lipman bound in all their projections.
These paths are described by the set

X = ﬂ Xz',j-
(1)<
X describes the polyhedron in which we will find the optimal multiple align-
ment.

Exercise 25 [10M, opt.] How can we convert the set of paths to the

set of nodes that defines the polyhedron 7

2.3 Where do we go from here ?

There are a lot of details we're glossing over just because we're using a very
simple "sum-of-pairs” cost model. For example, gap costs should be bio-
logically meaningful, and longer gaps therefore penalized less (so-called sub-
additivity of the gap cost function). Also, we would like to score (mis)matches
between distant sequences less than (mis)matches between closely related
ones. (Usually, an approximate distance between sequences is estimated by
doing pairwise alignments, see section 3). All this can be incorporated into
the standard dynamic programming algorithm, and it can also be incorpo-
rated into the Carrillo-Lipman technique for cutting futile paths through
the dynamic programming lattice. Finally, a lot of work has been done on
implementing the exploration of the lattice in a time- and space-efficient
way, by adopting the single-source shortest paths algorithm by Dijkstra, and
on a technique called "lower-bound / return-cost pruning” (cf. [GKS95],
[Kec95]). Interestingly, the latter technique is more powerful than the one
we have discussed here (more futile paths can be cut out), but its implemen-
tation consumes more memory per lattice node, and therefore the algorithm
"actually runs faster without the [lower-bound] pruning” [GKS95].
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Exercise 26 [02A] What happens if you add a bunch of copies of the
first sequence to the input of our multiple alignment technique employing
the simple SP-cost model ?

Exercise 27 [05M, opt.] In the beginning we said that for the case of
2 sequences, our math boils down to useless, yet obviously true observations.
What does the Carrillo-Lipman bound assert for the 2-sequence case ?

2.4 Some Bibliographic Hints.
The standard reference for Carrillo-Lipman is [Cal.88], followed up by [AIL89],

the latter dealing with the more sophisticated cost model of scoring along
a tree. The standard reference for its implementation, known as MSA; is
[GKS95]. WWW-server-access, paper and code (Release 2.1) are currently
available at http://ibc.wustl.edu/msa.html . The transcript of an online
discussion about MSA, with John Kececioglu, is available [Kec95]. [Gus93]

introduces an alternative lower bound L.

3 Heuristic Alignment Procedures and Ex-
amples

Here is what you will learn in the following sections: You will understand
how the most popular Multiple Alignment heuristic works, and following
an example, you will investigate optimal, heuristic, and structurally verified
multiple alignments obtained from WWW servers, recapitulating results from
an original paper.

3.1 Alignment along a Tree.

[ AliAlongTree ] For more than approximately 8 sequences of average size and
similarity, even employing Carrillo-Lipman bounds may not result in a man-
ageable demand on time and memory space, so that an optimal alignment
cannot be obtained. (This is the state-of-the-art in 1996.) In such cases,
alignment along a tree can be the alternative of choice.

Imagine that you have obtained a phylogenetic tree for the sequences
(Fig. 13). This tree may be the result of morphological studies, or it may be
obtained from the sequences themselves by one of the methods described in
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Figure 13: Phylogenetic Tree.

chapter 4. One popular approach (employed by the Clustal software package,
http://dot.imgen.bem.tme.edu:9331 /multi-align /multi-align-vsns.html) , is the
generation of all optimal pairwise alignments, the costs of which form the es-
timated distances between the sequences. From these distances, a tree can
then be obtained.

Exercise 28 [02] How many pairwise comparisons need to be done for
k sequences ?

Alignment along a tree is just this; a tree is used to decide about the
sequences that shall be aligned first, because of their close relation. After
the first step, more sequences are added by aligning them to the existing
alignment; we may also align an alignment to an alignment. Alignment
along a tree does not necessarily yield an optimal alignment, even if the tree
is "perfect”. For example, errors may be made in the very first pairwise
alignment and they do not get corrected because information from the other
sequences is overshadowed during the later steps.

Exercise 29 [02, opt] For which kind of trees may you need to align
an alignment to an alignment 7 Or, alternatively, for which kind of trees do
you not need to bother with this ?

The technique for aligning alignments is to simulate standard pairwise
alignment, but use profiles instead of sequences. For each position, a profile
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holds a list of the relative frequencies (i.e. values between 0 and 1) of the 20
amino acids (and gap), and the cost of matching a position in profile A with
a position in B is calculated by multiplying the (mis)match scores, for each
pair of amino acids, by the said amino acids’ frequencies at these positions,
and summing up.

Exercise 30 [05A] Calculate the score of matching the following two
positions in profiles A, and B, respectively:

vV

vV P
c | and (A)
L

Use the PAM250 similarity matrix, yielding a similarity score.

Exercise 31 [10M, opt.] Develop the mathematical formula for the
alignment of profiles. If you like, begin with the formula for aligning one
sequence to a profile. To this end, you need to introduce frequency vectors
of length 21, one vector per position of the profile.

Normally, the alignments obtained thus far are fixed; gaps may only be
added. Then, we follow the rule "Once a gap, always a gap” [FeDS87], also
known as ”Progressive Alignment”.

Our technique is illustrated by Fig. 14, adapted with permission from
[Bar95], the original of which is available at

http://geoff .biop.ox.ac.uk/papers/rev93_1/Figureb5.ps.

Some methods (e.g. [BaS87]) do an iterative refinement of the alignment
after the initial pass; now gaps may move.

The following concepts may easily be confused:
o Alignment along a tree,
e Scoring along a tree, and

o Tree Alignment.
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Figure 14: Progressive Alignment
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Scoring along a tree is the main alternative to the simple "sum-of-pairs” cost
model; only pairs of sequences that are adjacent (neighboring) in the tree
are taken into consideration (or, at least they’re weighted higher). Indeed,
by weighting the pairs differently, we can score along a tree, yet employ
Carrillo-Lipman and try out all possibly optimal alignment paths in the
hyperlattice, see [AIL89] I "Tree Alignment” subsumes methods that involve

reconstructing ancestral sequences, too.
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3.2 A Hands-On Example: Aligning Immunoglobulin
Sequences.

[ ImmiIntro ] We will now apply our knowledge about heuristic and optimal
alignment methods to a real-life example. The example is more real-life than
usual for a textbook; we will deal with a lot of problems you may face in
your own investigations, like hard-to-find sequences, inconsistent data, etc.
The author hopes that this has got some advantages, too :-)

Our example is taken from the paper ”A Strategy for the Rapid Multiple
Alignment of Protein Sequences. Confidence Levels from Tertiary Structure
Comparisons.” by G.J. Barton and M.J.E. Sternberg, J Mol Biol 1987;198:327-
337.

We will discuss alignments of the immunoglobulin sequences they are
using; fragments of these sequences have already been featured in the intro-
duction.

Exercise 32 [05*%] Get the paper ! J Mol Biol, the Journal of Molec-
ular Biology, is an absolute "must” for any university library. Students of
the GNA-VSNS Biocomputing Course may receive a copy from the instruc-
tors/organizers, if needed. Nevertheless, care has been taken to ensure that
the following section is self-contained.

Exercise 33 [10*] Inform yourself about the molecular biology of im-
munoglobulins; light chain, heavy chain, disulphide bridges, constant region,
so-called variable region, and how they fit together. (See also Fig. 15, below.)

3.3 Getting the Immunoglobulin Sequences from the
Internet.

[ ImmDescr ] The Barton & Sternberg paper is now 9 years old; it’s from the
early days of Multiple Alignment ! 9 years can be a long time for sequences,
too, as we will find out really soon.

The authors write the following about their selection of sequences; for-
matting their description was done by the textbook author. ”Fight domains
were selected (Brookhaven Data Bank codes).

e Four from 3FAB:
(a) light chain constant region C'A (FABCL);
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(b) light chain variable region VA (FABVL);
(c) heavy chain constant reg. 1 ('yl (FABCH1);
(d) heavy chain variable region Vv (FABVH).

e Two from 1FC1:
(a) heavy chain constant reg. 2 (42 (FCCH2);
(b) heavy chain constant reg. 3 ('vy3 (FCCH3).

e Two from 1FBA4:
(a) light chain variable region VA (FB4VL);
(b) heavy chain variable region Vv (FB4VH).”

The chains from FAB and FC1 make up one of the identical halves of an
antibody; one light (”A”) chain, and one heavy ("4”) chain, the heavy chain
consisting of 3, and the light chain consisting of 1 constant region, see Fig.
15. For more details, please try Kevin Shreders’s Antibody Resource Page,
http://www-chem.ucsd.edu/Faculty /goodman /antibody.html/abpage.html,
particular the link to Mike Clark’s page featuring Images of Immunoglobu-
lin Molecules. As an example of a relevant database, you may explore the
Kabat Database of Sequences of Proteins of Immunological Interest,

http://immuno.bme.nwu.edu/ .

The FB4 regions are added to the collection in order to have an equal
amount of variable and constant regions. Let me stress that the "vari-
able” regions get their name from the antigen-binding subregions ("CDRs”,
complementarity- determining regions), which are composed of just a few
amino acids each, and give the antibody its specificity. Most of the variable
region of an antibody is about as conserved as the constant regions are !

Exercise 34 [5, opt.] Using the Molecules R Us server,
http://molbio.info.nih.gov/cgi-bin/pdb , get some images of the 1FC1 im-
munoglobulin.

Exercise 35 [15, opt.] Using technology from the
VSNS-PPS course, http://www.cryst.bbk.ac.uk/PPS/index.html, you can
take a closer look at 1FC1. (This may take some time, though, if you need

36

—



Figure 15: Schematic Structure of an Antibody (Immunoglobulin)
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to install software, etc. Right now, the GNA-VSNS Biocomputing Course
organizers have not got enough time resources to help you intensively.)

In the alignments from the paper and from our introduction, the se-
quences are arranged as follows:

e Variable regions:
(BS1) 3FAB light chain variable region VA (FABVL);
(BS2) 1FB4 light chain variable region VA (FB4VL);
(BS3) 1FB4 heavy chain variable region V+y (FB4VH);
(BS4) 3FAB heavy chain variable region V+y (FABVH).

e Constant regions:
(BS5) 1FC1 heavy chain constant reg. 2 (42 (FCCH2);
(BS6) 3FAB light chain constant region (C'A (FABCL);
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(BS7) 3FAB heavy chain constant reg. 1 (vl (FABCH1);
(BS8) 1FC1 heavy chain constant reg. 3 ('y3 (FCCH3).

The arrangement of the variable and constant sets is done to maximize
similarity of adjacent sequences: both FB4 variable regions go together, and
both FAB constant regions go together. We will use this numbering (BS1-
BS8) throughout.

Up until the beginning of the next subsection (3.4) the following
is an optional part of the chapter, in which you will retrieve the
sequences from the net, and check your results.

[ ImmRetrieval ] Exercise 36 [15, opt.] For this exercise, note that
there are quite a lot of differences between the sequences you retrieve and
the sequences from the paper. What’s more, the sequences will be different
depending on the data bank you searched ! But don’t despair, you will have
a scout with you !

Obtain the 8 immunoglobulin sequences, using what you learned in chapter
2. If you’ve not read chapter 2 (What a shame !), start with Pedro’s list,
http://www.public.iastate.edu/~ pedro/research_tools.html and try out the
various PDB resources. Hint: 2 of the entries have been superseded, and
once you know the new entry IDs, you can search via SRS-WWW,
http://www.embl-heidelberg.de/srs/srsc.  If you’d like to obtain sequences
with the one-letter code directly, (and you want to end up with exactly the
same sequences as the author), you can access a nice databank for this via
SRS: PDBFINDER. PDBFINDER however does not distinguish variable and
constant regions; they are just concatenated ! (But you don’t need to worry
about this.)

Let’s take a look at the 3 PDBFINDER files you retrieved:
http://www.embl-heidelberg.de/srs/srsc? [PDBFINDER-id:7FAB]
http://www.embl-heidelberg.de/srs/srsc? [PDBFINDER-id:1FC1]
http://www.embl-heidelberg.de/srs/srsc? [PDBFINDER-id:2FB4]

They’re quite regular, 7TFAB and 2FB4 listing one heavy and one light
chain each, and 1FCI1 listing 2 identical chains A and B.

Exercise 37 [05B*] Why are chains A and B identical ?

Exercise 38 [05B*] "Why do light and heavy chains suddenly have
(approximately) the same length in TFAB and 2FB4 ? I thought, the heavy
chain is twice as long ?!”
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[ ImmRetrieval Verif ] We will now do a plausibility check on whether we’ve
retrieved the right sequences. To this end, we’ll align the fragments from the
introduction (they are listed in the order BS1-BS8, taken directly from the
paper) to the retrieved sequences. Variable and constant regions are still
stuck together !

Exercise 39 [10] Using the Clustal Query Form,
http://dot.imgen.bem.tme.edu:9331 /multi-align /multi-align-vsns.html, align
the fragments with the chains. Note that the above query provides a Clustal
Interface with the 1995 default parameters, so thal your alignments match
exactly the ones cited in this text ! If you use the standard BCM Launcher
page, you will get different results. Your Query, in Fasta-Format, should look
like:

>7FAB_light_chain
ASVLTQPPSVSGAPGQRVTISCTGSSSNIGAGHNVKWYQQLPGTAPKLLIFHNNARFSVSKSGTSATLAITGLQAEDEAD
YYCQSYDRSLRVFGGGTKLTVLRQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVKAGVETTTP
SKQSNNKYAASSYLSLTPEQWKSHKSYSCQVTHEGSTVEKTVAP

>2FB4_light_chain
QSVLTQPPSASGTPGQRVTISCSGTSSNIGSSTVNWYQQLPGMAPKLLIYRDAMRPSGVPDRFSGSKSGASASLAIGGLQ
SEDETDYYCAAWDVSLNAYVFGTGTKVTVLGQPKANPTVILFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVK
AGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS

>2FB4_heavy_chain
EVQLVQSGGGVVQPGRSLRLSCSSSGFIFSSYAMYWVRQAPGKGLEWVAIIWDDGSDQHYADSVKGRFTISRNDSKNTLF
LQMDSLRPEDTGVYFCARDGGHGFCSSASCFGPDYWGQGTPVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFP
QPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC
>7FAB_heavy_chain
AVQLEQSGPGLVRPSQTLSLTCTVSGTSFDDYYWTWVRQPPGRGLEWIGYVFYTGTTLLDPSLRGRVTMLVNTSKNQFSL
RLSSVTAADTAVYYCARNLIAGGIDVWGQGSLVTVSSASTKGPSVFPLAPTAALGCLVKDYFPEPVTVSWNSGALTSGVH
TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP

>1FC1
PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGK
EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV
LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS

>BS1-fragment

VTISCTGSSSNIGAGNHVKWYQQLPG

>BS2-fragment

VIISCTGTSSNIGSITVNWYQQLPG

>BS3-fragment

LRLSCSSSGFIFSSYAMYWVRQAPG

>BS4-fragment
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LSLTCTVSGTSFDDYYSTWVRQPPG
>BS5-fragment
PEVTCVVVDVSHEDPQVKFNWYVDG
>BS6-fragment
ATLVCLISDFYPGAVTVAWKADS
>BS7-fragment
AALGCLVKDYFPEPVTVSWNSG
>BS8-fragment
VSLTCLVKGFYPSDIAVEWESNG

Here is the result you will get:
Page 1.1

2FB4_heavy
7FAB_heavy

B W e

1FC1

BS1-fragme
BS2-fragme
BS3-fragme

w ~N O »

9 BS4-fragme
10 BS5-fragme
11 BS6-fragme
12 BS7-fragme

13 BS8-fragme

Page 2.1
91 105 106 120 121 135
1 7FAB_light --------=-----= —-=————-—-—-- ASVL TQPPSVSGAPGQRVT
2 2FB4_light AWDVSLNAYVFGTGT KVTVLGQPKANPTVT LFPPSSEELQANKAT
3 2FB4_heavy EVQL VQSGGGVVQPGRSLR
4

7FAB_heavy AVQL EQSGPGLVRPSQTLS
5 1FC1
6 BS1-fragme ———-——=—-==-=-==== —————————————o— —— oo VT
7 BS2-fragme =============== —mmme————m———e— me—————————ee VT
8 BS3-fragme —==—-—-—=-===-==== —o—m—————————os me———o——— e LR
9 BS4-fragme ==========-==== —mmme———mm———e— me—————————ee LS
10 BS5-fragme —============-== —-——me————————— e ————— e PE
11 BS6-fragme —============== —-——me————————— ——m—————————— AT
12 B87-fragme =============-== ————mee———————s ——m————————e— AA
13 BS8-fragme —============-== —-——me————————— ——me————————— Vs

(continues alignment of full chains)

136 150
ISCTGSSSNIGAG-H
LVCLISDFYPGA--V
LSCS-SSGFIFSS-Y
LTCT-VSGTSFDD-Y

VTCVVVDVSHEDPQV
ISCTGSSSNIGAG-N
ISCTGTSSNIGS--I
LSCS-SSGFIFSS-Y

LTCT-VSGTSFDD-Y
VTCVVVDVSHEDPQV
LVCLISDFYPGA--V
LGCL-VKDYFPEP-V

LTCLVKGFYPSD--I

TFAB L gt = m = m = m o oo oo oo e
2FB4_light QSVLTQPPSASGTPG QRVTISCSGTSSNIG SSTVNWYQQLPGMAP KLLIYRDAMRPSGVP DRFSGSKSGASASLA IGGLQSEDETDYYCA

151 165 166 180
NVKWYQQLPGTAPKL LIFHNNARFSVSKSG
TVAWKADGSPVKAGV ETTKPSKQSNNKYAA
AMYWVRQAPGKGLEW VAIIWDDGSDQHYAD
YWTWVRQPPGRGLEW IGYVFYTG-------

KFNWYVDGVQVHEAK TKPREQQYNSTYRVV
HVKWYQQLPG----- —-=-==-————-=—-
TVEWYQQLPG-==-== =============—=
AMYWVRQAPG----- --===-====--=—-

YSTHVRQPPG-=-== —=——===m—=mmmm—
KFNHYYDGmmmmmmm == mmmmmmmmmmm e
TYAWKADS==mmmmm —mmmmmmmmmmmm e
TYSHE===§Gmmmmm mmmmmm————————

AVEWESNG---==== —=======——————-

Exercise 40 [00B] Why did we not just use our text editor to find the
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fragments in the sequences 7

Exercise 41 [00] Why did we not use a local alignment technique like
the one presented in chapter 1 7 That would have worked much better !

[ ImmRetrieval VerifDisc | Let us interpret the Clustal Alignment. First of
all, 2FB4 light got shifted; its constant region seems to be very similar to the
variable regions of other chains !

Exercise 42 [02B] How do we know that the PDBFINDER files list the

variable region followed by the constant region, and not vice versa ?

BS1, BS3 and BS4 align as expected to the variable regions of the TFAB
/ 2FB4 chains. (There is an HN/NH difference between fragment BS1 and
7TFAB, at positions 150-151, Also, Pos. 152 is inconsistent for BS4.) BS2
is supposed to align with the variable chain of 2FB4 light, but it doesn’t !
Indeed, taking a look at the tree used by Clustal (Fig. 16), we see that
it aligns the profiles containing BS2 and 2FB4 light at a rather late stage,
so that BS2’s high similarity (not identity, due to whatever errors) with
the subsequence VTISCSGTSSNIG SSTVNWYQQLPG in the 2FB4 light variable
region (pos. 18-42) has been overshadowed during profile alignment.

Figure 16: Phylogenetic Tree used by Clustal.

BS3-fragment BS4—fragment

BS2—-fragment

BS1—fragment
1FC1

BS5—fragment

7FAB heavy chain

2FB4 heavy choin

%67frugmemt
2FB4 light chain

BS8- ogme%
BS7—fragment

Next, observe that BS5 and BS6 are aligned properly to 1FC1 and 2FB4
light, respectively. For BS5 that’s OK (1FC1, as we've said in the beginning,
is indeed the concatenation of the heavy chain’s second and third constant
region, and BS5 is a fragment from the second constant region; see also Fig.
15.) For BS6, this is a little miracle; after all, it aligns to the constant region
of 2FB4 light, which is not in our collection of 8 immunoglobulin sequences !
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Exercise 43 [02] So which two constant regions have an identical (sub)-
sequence ! If you're not sure, use your text editor, searching this text for
even smaller fragments like "LVCL”. Can you find a reason for this identity 7

BS7 and BS8 are obviously misaligned; you will find copies of them at
the end of TFAB heavy, and 1FCI1, in the constant regions (these ends are
cut away in the Clustal Alignment shown.)

The following 3 exercises are concerned with some problems you encounter
when doing databank retrieval.

Exercise 44 [05, opt.] Find sequence TFAB light (variable region) in
SwissProt and confirm that it’s got NH again, just as in fragment BS1, pos.
150-151. (I'm not exactly sure about the difference between "1G LAMBDA
CHAIN V-VI REGION (NIG-48)” and ”"1G LAMBDA CHAIN V- REGION
(NEWM)”. The latter is the correct one. If you've got the paper handy, you
will note that this sequence is exactly the one from the paper, whereas the
one we obtained from PDBFINDER differs in 4 positions !) If you want to
detect further problems, you can go on and retrieve what seem to be the
SwissProt equivalents of the 2FB4 heavy chain variable region (BS3) and
7TFAB heavy chain variable region (BS4). Now they’re farther away; I guess
this must have got something to do with the labels ”"V-III(KOL)” and ”V-
II(NEWM)” of the SwissProt sequences. Can an immunologist help out ?

Exercise 45 [25, opt.] Try to find the 2FB4 light variable region in
another databank, i.e. not in PDB/PDBFINDER. This seems to be a chal-
lenge, and I couldn’t find it, not even using Blast/Fasta searches. If you find
it, or know why it’s not in SwissProt, the author will email you a beer !

Exercise 46 [15, opt.] Try to find the 7TFAB light constant region in
another databank, i.e. not in PDB/PDBFINDER. Another challenge !

If you’ve done the last few exercises, you have got some justification to
cite for your cutting point between the variable and constant regions of our
sequences; equivalently you could have searched for the respective constant
regions in SwissProt. This would give you the "exact” cutting points be-
tween the constant regions, too; BS7, BSH, and BS8 are in one SwissProt file
(why ?), and the headers list the exact cut-points ! Or you can be as lazy
as the author and use the cut-marks employed in the Barton & Sternberg
paper, as follows. (For perfectionists, BS6 and BS7 got a few residues added,
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and BS8 got one residue deleted. Now they’ve got the same length as the
ones in the original paper.)

>BS1, 7FAB light chain variable region
ASVLTQPPSVSGAPGQRVTISCTGSSSNIGAGHNVKWYQQLPGTAPKLLIFHNNARFSVSKSGTSATLAITGLQAEDEAD
YYCQSYDRSLRVFGGGTKLTVLR

>BS2, 2FB4 light chain variable region
QSVLTQPPSASGTPGQRVTISCSGTSSNIGSSTVNWYQQLPGMAPKLLIYRDAMRPSGVPDRFSGSKSGASASLAIGGLQ
SEDETDYYCAAWDVSLNAYVFGTGTKVTVLGQ

>BS3, 2FB4 heavy chain variable region
EVQLVQSGGGVVQPGRSLRLSCSSSGFIFSSYAMYWVRQAPGKGLEWVAIIWDDGSDQHYADSVKGRFTISRNDSKNTLF
LQMDSLRPEDTGVYFCARDGGHGFCSSASCFGPDYWGQGTPVTVSS

>BS4, 7TFAB heavy chain variable region
AVQLEQSGPGLVRPSQTLSLTCTVSGTSFDDYYWTWVRQPPGRGLEWIGYVFYTGTTLLDPSLRGRVTMLVNTSKNQFSL
RLSSVTAADTAVYYCARNLIAGGIDVWGQGSLVTVSS

>BS5, 1FC1 heavy chain constant region
PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGK
EYKCKVSNKALPAPIEKTISKAKG

>BS6, 7FAB light chain constant region
QPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKS
HKSYSCQVTHEGSTVEKTVAPtscs

>BS7, 7FAB heavy chain constant region
ASTKGPSVFPLAPTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK
PSNTKVDKKVEPksa

>BS8, 1FC1 heavy chain constant region
QPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN
VFSCSVMHEALHNHYTQKSLSL

3.4 Optimal, Heuristic, and Structurally Verified Align-
ments of the Immunoglobulin Sequences.

[ ImmMsa ] Now we’ve finally retrieved and confirmed the data (see the
listing above, i.e. at the end of the previous section) and can start aligning !
These data are not exactly the ones from the paper, due to whatever errors,
but they’re close enough so that we can "reproduce” a few results from the
Barton & Sternberg paper. This "reproduction” will be qualitative, because
we’ve mainly got Clustal at our disposal. Clustal aligns along a tree, whereas
Barton & Sternberg add one sequence at a time to a "growing” profile.

43



Let’s start with an MSA alignment, since we cannot do any better than
optimal if the underlying cost model is appropriate. However, we cannot get
an MSA alignment on the net at the Washington University MSA server,
http://ibc.wustl.edu/msa.html; the process gets killed after some time, we're
using up too many resources ! All we can get is the heuristic alignment
calculated by MSA (see 3.6).

Do not overload the Washington University MSA server by trying the
MSA alignment yourself I This time, only use the form with the "oplimal
alignment” option set to 7off”. If you’ve got MSA 1.0 or the newly released
MSA 2.1 at your computer, and nobody’s watching, you can try it out. Fven
with MSA 2.1, the author’s workstation couldn’t finish the job. I guess a
supercomputer is needed ¢!

Exercise 47 [10*] Nevertheless, the author has obtained an alignment
from the MSA server that he believes is "optimal”. Very simple trick, ex-
plained a little later ;-)

So, here’s the optimal MSA alignment (well, sort-of...).

-p--SVFLFPpkpkdt1lmisrtpEVICVVvdvshedpqvKFNWYvd--gvqvh--naKTKPR----—------ eqq
qpkaapSVTLFPpsseelqankaTLVCLIsdfypga--vIVAWKadg-spvka--GVETTtp-——------- skq
-------- astkgpSVFPLAptaALGCLVkdyfpep--vIVSWNs---galts--GVHTFpa-=---------vlq
qpr-epQVYTLPpsreemtknqvSLTCLVkgfypsd--iAVEWEsn--gqpen--NYKTTpp-=====---- vld
SVSKSgTSAT--LAItglqaedeadYYC--QSYdr-------- slr--VFGggtkltvlr-
SGSKSgASAS--LAIgglgsedetdYYC--AAWdV-—==---- slnayVFGtgtkvtvlgq
TISRNdskNTLFLQMdslrpedtgvYFCARDgghgfcssascfgpd--YWGqgtpvtvss-
TMLVNtskNQFSLRLssvtaadtavYYCARNliag-—------- gid--VWGqgslvtvss-
ynstyrVVSV--LTVl1hqnwldgkeYKC--KVSnk-------- alp--aplEKtiskakg-
snnkyaASSY--LSLtpeqwkshksYSC--QVThe-------- gst----VEKtvaptscs
ssglysLSSV--VTV-pssslgtqtYIC--NVNhk-------- psn--tkVDKkvepksa-
sdgsffLYSK--LTVdksrwqqgnvFSC--SVMhe-------- alh--nhyTQKslsl---

We can easily recognize the correct alignment of the two Cysteine residues,
and the Tryptophane. So this alignment is at least not completely off, i.e.
it reproduces some features that a working immunologist easily recognizes.
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(Capitalized residues are part of the structurally verified alignment, see be-
low.)

Exercise 48 [05, opt.] Get a colorful visualisation of the alignment, by
using the Weblogo server,
http://www.bio.cam.ac.uk/cgi-bin/seqlogo/logo.cgi. For your convenience,
the Fasta format of our alignment is available, see 3.7.

Although this does not do justice to Tom Schneider’s ”Sequence Logo”
theory, we just note that the large characters in the Weblogo output denote
the conserved residues.

[ ImmMsaFEpsAll ] The "optimal” alignment is pretty much different from
the heuristic one calculated by MSA before bogging down (see 3.6). Indeed,
the polyhedron that needs to be explored is huge, as you can see from looking
at the differences between the projected heuristic and the optimal pairwise
alignments. (These differences give rise to the ”"compensation term” that is
used to establish the Carrillo-Lipman bounds that in turn influence the poly-
hedron. See section 2.1 on the theory of the Carrillo-Lipman Bound). They
are called "epsilon” in the following MSA 2.0 printout (this was printed out
before the author’s computer started the insurmountable task of exploring
the polyhedron). ”I” and 7J” are, of course, the direction of the projection
for which the difference is given.

--—-Estimated epsilons——--
=1 J=2 epsilon= 8
epsilon = 50
epsilon = 34
epsilon = 50
epsilon = 50
epsilon = 28
epsilon = 50
epsilon = 50
epsilon = 26
epsilon = 50
epsilon = 50
epsilon = 34
epsilon = 50
epsilon = 5
epsilon = 50
epsilon = 50

HH HHHHHHHHHHH H H H
1} |

W W WNNMNDNDNNDNMNRPE,E PR PP P

L G S )
1}

O 0D 0 N O W oo N oW
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epsilon = 50
epsilon = 50
epsilon = 50
epsilon = 50
epsilon = 50
epsilon = 50
epsilon = 5
epsilon = 50
epsilon = 25
epsilon = 9
epsilon = 22
epsilon = 43

HHHHHHHHHH H H
n o1

~N OO 01O o WW
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Exercise 49 [05, opt.] What does epsilon = 5 mean 7 5 units of
what 7 How has this been standardized ? (Hint: See the next exercise.)

Epsilon = 50 is a threshold, larger values are just cut ! Therefore, it
is possible that even if the computer were not bogged down, the full-size
polyhedron would not have been explored, and the alignment would not nec-
essarily have been optimal. The reason for all our trouble is now becoming
clear: Our immunoglobulin sequences are too dissimilar to even suggest a
heuristic alignment that is indeed close to the optimal one; "expert knowl-
edge” at least about the Cys and Trp (W) residues is needed. We will soon
see that the "optimal” MSA alignment (which the author obtained by cut-
ting all sequences in two parts, and piecing the alignments together :-) is
approximately as far away from the "biological truth” as MSA’s heuristic
one, and Clustal’s (see below).

[ ImmMsaFEpsPartial ] Although the MSA server does not inform you about
the "epsilon”- values if the process gets killed, you can still get an idea of these
values yourself, by submitting subsets. For example, aligning the constant
regions only, the following information is returned (the alignment will be
displayed and discussed below.)
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Costfile: pam250
Alignment cost: 13103 Lower bound: 12933
Delta: 170 Max. Delta: 199

Sequences Proj. Cost Pair. Cost Epsilon Max. Epsi. Weight Weight*Cost

1 2 1672 1670 2 19 1 1672

1 3 1624 1622 2 5 1 1624

1 4 1656 1656 0 8 2 3312

2 3 1633 1586 47 41 2 3266

2 4 1608 1592 16 27 1 1608

3 4 1621 1565 56 50 1 1621
Elapsed time = 1.469

The quantilty called epsilon in the last table is now called Max. Epsi. !
Exercise 50 [05A] Given the information above, it’s now easier to an-
swer the question “What does epsilon = 5 mean ?” (see the last exercise).

Exercise 51 [05%A] Which quantities do Lower bound, Proj. Cost,
Pair. Cost, Delta and Max. Delta represent 7 Hint: The Delta’s have
to do with the epsilons, just looking at their size.

Exercise 52 [10A] Calculate the Carrillo-Lipman bound for pair (1,2),
under the assumption that the difference between the costs of the projected
heuristic and the pairwise optimal alignment for pair (3,4) is indeed 50 (i.e.
that no cutting down to 50 took place). Pairs (1,4) and (2,3) have weight 2 !

[ ImmStruct Verif | Looking at the 3-dimensional structures of our protein
domains, experts have derived so-called "structurally verified alignments”
for parts of them (called "motifs” hereafter). The following are listed in the
Barton & Sternberg paper; they correspond to the different 3-chains of the
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immunoglobulin domains, and will be taken as the "standard of truth”.

A B C D E F G

VLTQPP TISCTG NVKWY SVSKS TSATLAI YYCQSY VFG
VLTQPP TISCSG TVNWY SGSKS ASASLAI YYCAAW VFG
QLVQSG RLSCSS AMYWV TISRN NTLFLQM YFCARD YWG
QLEQSG SLTCTV YWTWV TMLVN NQFSLRL YYCARN VWG
SVFLFP EVTCVV KFNWY KTKPR VVSVLTV YKCKVS IEK
SVILFP TLVCLI TVAWK GVETT ASSYLSL YSCQVT VEK
SVFPLA ALGCLV TVSWN GVHTF LSSVVTV YICNVN VDK
QVYTLP SLTCLV AVEWE NYKTT LYSKLTV FSCSVM TQK

Exercise 53 [10*] Looking at the "optimal” MSA alignment, which (-
chains were aligned correctly 7 How many residues were misaligned 7 For
the latter, count residues as misaligned if they don’t align with the majority
of residues that are following the column of a motif, and count all residues if
the column got completely scrambled (i.e. if there are no two residues that
are aligned according to the motif). In other words, for all of the 38 columns
displayed above, look whether you can at least identify a relative majority
of residues aligned in the same way, and count those residues that are not
aligned to them.

Exercise 54 [05] Take a look at MSA’s heuristic alignment (see 3.6),
and/or its Weblogo diagram. Compared to the "standard-of-truth” data,
which seemingly conserved residue is just an artifact, i.e. the result of mis-
alignments 7

[ ImmClustal ] Here is the Clustal alignment (again using the BCM Search
Launcher,
http://dot.imgen.becm.tme.edu:9331 /multi-align /multi-align-vsns.html, 1995
default settings), for comparison. The motifs are given in capital letters, but
it’s nevertheless a good idea to print out the alignment, and put the beta-
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sheets into boxes in the same way as in the Barton & Sternberg paper (p.331).

-fSVSK--SgTSATLAItglqaedeadYYCQ-———----— SYdrslr--VFGggtkltvlr-
-fSGSK--SgASASLAIgglgsedetdYYCA-————--- AWdvslnayVFGtgtkvtvlgq
rfTISRNdskNTLFLQMdslrpedtgvYFCARDgghgfcssascfgpdYWGqgtpvtvss-
rvIMLVNtskNQFSLRLssvtaadtavYYCARN-------- liaggidVWGqgslvtvss-
--ynst--yrVVSVLTVlhgnwldgkeYKCK-—--—------ VSnkalpapIEKtiskakg-
-gsnnk--yaASSYLSLtpeqwkshksYSCQ=========-= VThegstVEKtvaptscs--
---s5s5g--1ysLSSVVTVpssslgtqtYICN=-========= VNhkpsntkVDKkvepksa=
--sdgs--ffLYSKLTVdksrwqqgnvFSCS-=======-- VMhea--1hnhyTQKslsl-

Exercise 55 [05, opt.] Obtain the Clustal alignment from the WWW,

Exercise 56 [05A] In the Clustal alignment, which motifs were aligned
correctly 7 How many residues were misaligned ? (See Exercise 53.)

Exercise 57 [10, opt.] Find out about the tree along which Clustal did
the alignment. (Unfortunately, the WWW Forms I know do not return a
picture of the tree along which Clustal aligned; you need to interpret or con-
vert the text description of the tree returned by the Washington University
server, unless you have Clustal/Phylip on your computer. Alternatively, you
may look at the tree from ETH Zurich’s All-All service,
http://cbrg.inf.ethz.ch /subsection3_1_1.html, i.e. Fig. 13. Topologically, it’s
the same as the Clustal tree.)
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[ ImmMsaPartial | Let us now align variable and constant regions alone;

asVLTQPPsvsgapgqrvTISCTGsssnigaghNVKWYqqlpgtapkll--ifhnn---------- arfSVSKSg
qsVLTQPPsasgtpgqrvTISCSGtssnig-ssTVNWYqqlpgmapkll--iyrda---mrpsgvpdrfSGSKSg
evQLVQSGggvvqpgrs1RLSCSSsgfifs-syAMYWVrqapgkglewvaiiwddgsdghyadsvkgrfTISRNd
avQLEQSGpglvrpsqt1lSLTCTVsgtsfd-dyYWTWVrgppgrglewigyviytg-ttlldpslrgrvIMLVNt

TSAT--LAItglqaedeadYYCQS-------- Ydrslr--VFGggtkltvlr-
ASAS--LAIgglgsedetdYYCAA-—-—----- WdvslnayVFGtgtkvtvlgq
skNTLFLOMdslrpedtgvYFCARDgghgfcssascfgpdYWGqgtpvtvss—
skNQFSLRLssvtaadtavYYCAR-------- NliaggidVWGqgslvtvss-—

is the optimal MSA alignment of the variable regions, and

----- pSVFLFPpkpkdtlmisrtpEVICVVvdvshedpqvKFNWYvdgvqv-hnaKTKPReqqynstyrVVSVL
qpkaapSVTLFPpssee--1qankaTLVCLIsdfypga--vIVAWKadgspvkaGVETTtpskgsnnkyaASSYL
---------- astkgpSVFPLAptaALGCLVkdyfpep--vIVSWNsgalt--sGVHTFpavlgssglysLSSVV
qpre-pQVYTLPpsree--mtknqvSLTCLVkgfypsd--1AVEWEsngqpe-nNYKTTppvldsdgsffLYSKL

TV1lhqnwldgkeYKCKVSnkalpaplEKtiskakg-
SLtpeqwkshksYSCQVTheg--stVEKtvaptscs
TV-pssslgtqtYICNVNhkpsntkVDKkvepksa-
TVdksrwqqgnvFSCSVMhealhnhyTQKslsl---

is the optimal MSA alignment of the constant regions. Calculating the ac-
curacy for these 2 alignments separately, we count 9 misaligned residues in
the variable regions, and 14 in the constant regions, from a total of 152 each.
Modifying the accuracy scores of the 8-sequence-alignments (see exercise 53),
counting only misaligned amino acids within one group (either constant, or
variable), we obtain 14 and 20 errors, respectively. These alignments were
made with the help of the other group of sequences, and in fact multiple
alignment deteriorates accuracy scores ! Barton & Sternberg perform a more
detailed analysis, comparing the scores of all pairwise alignments within one
group (without taking the other sequences into consideration) with the ac-
curacy obtained from the 8-sequence alignment, and observe the same dete-
rioration.
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[ ImmClustalPartial ] The same phenomenon can be observed using Clustal
alignments, viz.

asVLTQPPsvsgapgqrvTISCTGsssnigaghNVKWYqqlpg--tapkllifhnnar---------- fSVSK--
qsVLTQPPsasgtpgqrvTISCSGtssnigs-sTVNWYqqlpg--mapklliyrdamrpsgvpdr---f£3GSK--
evQLVQSGggvvqpgrs1RLSCS-SsgfifssyAMYWVrqapgkglewvaiiwddgsdghyadsvkgrfTISRNd
avQLEQSGpglvrpsqt1lSLTCT-VsgtsfddyYWTIWVrgppgrglewigyviytg-ttlldpslrgrvIMLVNt

SgTSATLAItglqaedeadYYCQSY-———------ drslr--VFGggtkltvlr-
SgASASLAIgglgsedetdYYCAAW-—-—--—-—-- dvslnayVFGtgtkvtvlgq
skNTLFLQMdslrpedtgvYFCARDgghgfcssascfgpdYWGqgtpvtvss—
skNQFSLRLssvtaadtavYYCARN-------- liaggidVWGqgslvtvss-

is the Clustal alignment of the variable regions, and

————— pSVFLFPpkpkdtlmisrtpEVTCVVvdvshedpqvKFNWYvdgvqvhn-aKTKPReqqynstyrVVSVL
qpkaapSVTLFPpsse--elqankaTLVCLIsdfypg--avIVAWKadgspvkaGVETTtpskgsnnkyaASSYL
astkgpSVFPLApt---------- aALGCLVkdyfpe--pvIVSWN-sgaltsG-VHTFpavlqgssglysLSSVV
qpre-pQVYTLPpsre--emtknqvSLTCLVkgfyps--diAVEWEsngqpenN-YKTTppvldsdgsffLYSKL

TV1lhqnwldgkeYKCKVSnkalpaplEKtiskakg-
SLtpeqwkshksYSCQVTheg--stVEKtvaptscs
TVpssslgt-qtYICNVNhkpsntkVDKkvepksa-
TVdksrwqqgnvFSCSVMhea--1hnhyTQKslsl-

is the Clustal alignment of the constant regions. Calculating accuracy for
this case, we observe only 4 misaligned residues in the variable regions, and
only 9 misaligned residues in the constant regions.

[ ImmQualityAndRelatedness ] If multiple alignment gives us worse results,
why bother with it 7 As the previous examples show, distant sequences can
have a malign influence on the alignment of more related sequences, but we
are hopeful that by adding related sequences, we can improve the alignment
of distant sequences.

Indeed, the Clustal alignment of BS3 and BS8 is as follows,

evQLVQSGggvvqpgr------ s1RLSCSSsgfifssyAMYWVr-qapgkglewvaiiwd-dgsdghyadsvkgr
--qprepQVYTLPpsreemtknqvSLTCLVkgfypsdiAVEWEsngqpenNYKTTppvldsdgs========== £

fTISRNdskNTLFLQMdslrpedtgvYFCARDgghgfcssascfgpdYWGqgtpvtvss
fLYSK-------- LTVdksr--------- wqqgnvFSCSVMhealhnhyTQKslsl---

It contains 24 misaligned residues (out of 38), and it’s obvious that adding
related sequences here improves the alignment significantly. Using their own
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alignment method, Barton & Sternberg perform all pairwise alignments, one
variable aligned to one constant, and note that adding the remaining 6 se-
quences and aligning multiply improves accuracy from 41 to 63 percent, on
average.

Exercise 58 [15, opt.] Use Geoffrey Barton’s AMAS utility,
http://geofl.biop.ox.ac.uk/servers/amas_server.html, to analyse the multi-
ple alignments from this section. Start with the "optimal” MSA alignment we
pieced together. AMAS will give you an idea of the physical properties that
are conserved at various positions. Can you find residues with hydrophobic
properties at 7,7 + 2,1 + 4 separated by unconserved or hydrophilic residues
at 1+ 1,2+ 3 7 Such a pattern is typical for a surface F—strand. AMAS
currently accepts FASTA format, provided that you add the character 7*”
to the end of each sequence, like this:

>BS1, 7FAB light chain variable region

>BS2, 2FB4 light chain variable region

----- QSVLTQPPSASGTPGQRVTISCSGTSSNIGS--STVNWYQQLPGMAPK--LLIYRDA---MRPSGVPDRF
SGSKSGASAS--LAIGGLQSEDETDYYC--AAWDV-------- SLNAYVFGTGTKVTVLGQ*

C...]

3.5 Some Bibliographic Hints.

Review papers with an emphasis on heuristic multiple alignment are [CWC92]
and [MVF94], the latter comparing the results of various implementations
on 4 standard datasets. ClustalW is described in [THG94]. For MSA refer-
ences, see the theory part of this chapter. A general survey on the sequence
analysis of immunoglobulins is given in [Wil87]. Some papers dealing with
the alignment of immunological sequences are [Tay86], [BaS87] (of course!),

and [ViA91].

3.6 Appendix 1. Another Heuristic Alignment of the
Immunoglobulin Sequences.

Here’s the heuristic alignment that is calculated by the MSA preprocess-
ing; the author is currently looking for some exact documentation. [LAK89]

52



write about the MSA 1.0 implementation, that they use "a progressive align-
ment strategy similar to those described by Waterman and Perlwitz [WaP84],
Feng and Doolittle [FeD87] and Taylor [Tay87]”. ”Progressive alignment”
obviously refers to the "Once a gap, always a gap” rule mentioned above.

However, the MSA 2.0 paper [GKS95] offers a different description ?!

ASVLTQPPSVSGAPG-------- QRVTISCTGSSSNIGAGHNV--KWYQQLPGTAPK---LLIFHNN--------
QSVLTQPPSASGTPG-------- QRVTISCSGTSSNIGSS-TV--NWYQQLPGMAPK---LLIYRDAM--RPSGV
EVQLVQSGGGVVQPG-------- RSLRLSCSSSGFIFSSY-AM--YWVRQAPGKGLEWVAIIWDDGSDQHYADSV
AVQLEQSGPGLVRPS-------- QTLSLTCTVSGTSFDDY-YW--TWVRQPPGRGLEWIGYVFYTGTT-LLDPSL

-ARFS--VSKSGTSATLAITGLQAEDEADYYCQSYDRSL-------- R--VFGGGTKLTVLR--
PDRFS--GSKSGASASLAIGGLQSEDETDYYCAAWDVSL-------- NAYVFGTGTKVTVLGQ-
KGRFTISRNDSKNTLFLQMDSLRPEDTGVYFCARDGGHGFCSSASCFGPDYWGQGTPVTVSS--
RGRVTMLVNTSKNQFSLRLSSVTAADTAVYYCARNLIAG-------- GIDVWGQGSLVTVSS--
-QYNS--TYRVVSVLTVLHQNWLDGK--EYKCKVSNKAL-------- P---APIEKTISKAKG-
-QSNN--KYAASSYLSLTPEQWKSHK--SYSCQVTHEG--------=---- STVEKTVAPTSCS
-QSSG--LYSLSSVVTVPSSSLGTQ---TYICNVNHKPS-------- N---TKVDKKVEPKSA-
-DSDG--SFFLYSKLTVDKSRWQQGN--VFSCSVMHEAL-------- H---NHYTQKSLSL---

3.7 Appendix 2. ?Optimal” MSA-Alignment in Fasta-
Format.

For your convenience in solving some of the exercises, the following is the

7Optimal” MSA-Alignment, in FASTA-Format.
>BS1, 7FAB light chain variable region

SVSKSGTSAT--LAITGLQAEDEADYYC--QSYDR-------- SLR--VFGGGTKLTVLR-

>BS2, 2FB4 light chain variable region

----- QSVLTQPPSASGTPGQRVTISCSGTSSNIGS--STVNWYQQLPGMAPK--LLIYRDA---MRPSGVPDRF
SGSKSGASAS--LAIGGLQSEDETDYYC--AAWDV-------- SLNAYVFGTGTKVTVLGQ

>BS3, 2FB4 heavy chain variable region

————— EVQLVQSGGGVVQPGRSLRLSCSSSGFIFSS--YAMYWVRQAPGKGLEWVAIIWDDGSDQHYADSVKGRF
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TISRNDSKNTLFLQMDSLRPEDTGVYFCARDGGHGFCSSASCFGPD--YWGQGTPVTVSS-
>BS4, 7FAB heavy chain variable region
----- AVQLEQSGPGLVRPSQTLSLTCTVSGTSFDD--YYWTWVRQPPGRGLEWIGYVFYTG-TTLLDPSLRGRV

TMLVNTSKNQFSLRLSSVTAADTAVYYCARNLIAG-------- GID--VWGQGSLVTVSS-

>BS5, 1FC1 heavy chain constant region
-P--SVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVD--GVQVH--NAKTKPR---------~- EQQ
YNSTYRVVSV--LTVLHQNWLDGKEYKC--KVSNK---~----~ ALP--APIEKTISKAKG-

>BS6, 7TFAB light chain constant region
QPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGA--VTVAWKADG-SPVKA--GVETTTP---------- SKQ
SNNKYAASSY--LSLTPEQWKSHKSYSC--QVTHE-------- GST----VEKTVAPTSCS

>BS7, 7TFAB heavy chain constant region

———————— ASTKGPSVFPLAPTAALGCLVKDYFPEP--VTVSWNSG--GALTS--GVHTFPA----------VLQ
SSGLYSLSSV--VTV-PSSSLGTQTYIC--NVNHK-------- PSN--TKVDKKVEPKSA-

>B38, 1FC1 heavy chain constant region
QPR-EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD--IAVEWESN--GQPEN--NYKTTPP--======== VLD
SDGSFFLYSK--LTVDKSRWQQGNVFSC--SVMHE-=-==---- ALH--NHYTQKSLSL=---
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