
PARALLEL MULTIPLE SEQUENCE ALIGNMENT
USING SPECULATIVE COMPUTATION

Tieng K. Yap1, Peter J. Munson1, Ophir Frieder2, and Robert L. Martino1

1Division of Computer Research and Technology, National Institutes of Health
12 South Dr. • Bldg 12A • Rm 2033 • Bethestha, MD 20892-5624

{yap | munson | martino}@alw.nih.gov
2Department of Computer Science, George Mason University

Fairfax, VA 22030-4444
ophir@cs.gmu.edu

Appeared in the

Proceedings of the
1995 International Conference on Parallel Processing

August, 1995

1

PARALLEL MULTIPLE SEQUENCE ALIGNMENT
USING SPECULATIVE COMPUTATION

Tieng K. Yap1, Peter J. Munson1, Ophir Frieder2, and Robert L. Martino1

1Division of Computer Research and Technology, National Institutes of Health
12 South Dr. • Bldg 12A • Rm 2033 • Bethestha, MD 20892-5624

{yap | munson | martino}@alw.nih.gov
2Department of Computer Science, George Mason University

Fairfax, VA 22030-4444
ophir@cs.gmu.edu

Abstract -- Many different methods have been
presented for aligning multiple biological sequences.
These methods can be classified into three categories:
rigorous, tree-based, and iterative. The rigorous
method, which always generates the optimal alignment,
requires memory space and computation time
proportional to the product of the sequence lengths.
Even for a modest number of sequences, this method
becomes impractical. As a result, the other two
methods were introduced. The iterative methods were
shown to generate better alignments than the tree-
based methods. However, these methods require as
much as 100 times longer computation time. A number
of days may be required to align a large number of
sequences (e.g., over 100 sequences) sequentially. We
present a parallel speculative computational method
which reduces the computation time of the iterative
methods from days to minutes. To evaluate our
parallel method, we implemented a speculative
computation version of the iterative improvement
method of Berger and Munson on an Intel iPSC/860
parallel computer. The empirical results demonstrate
that our parallel method obtained a significant speed
up in comparison to the sequential method.

INTRODUCTION

Pairwise sequence alignment is an important tool for
locating similarity patterns between two biological
(DNA and protein) sequences. This analytical tool has
been used successfully to predict the function, structure,
and evolution of biological sequences. The first

2This author was partially supported by the National Science Foundation
under contract number IRI-9357785, by the Virginia Center for
Innovative Technology under contract number INF-94-002, and by
XPAND Corporation.

biological sequence alignment algorithm, referred to as
dynamic programming, was introduced by Needleman
and Wunsch [[21]]. This algorithm was later improved
by a number of researchers through an improved
formulation [[24]], a reduced time complexity [[8]],
and a reduced space complexity [[18]]. As more
sequences were generated by the biomedical
community, researchers began to use multiple sequence
alignment to obtain a better understanding of biological
sequences. Although the rigorous dynamic
programming algorithm can be extended to align more
than two sequences, it is impractical to extend this
algorithm to the alignment of more than three
sequences [[19], [20]] since memory space and
computation time is proportional to the product of the
sequence lengths. By restricting the number of possible
alignments, the algorithm can be extended to align six
to eight sequences [[4], [16]].

To practically align a large number of sequences,
many researchers use the tree-based methods which
generate a multiple sequence alignment by combining a
number of pairwise alignments in a particular order.
For a binary tree where there is only one branch at each
level, the order is linear [[1], [17], [25]]. These linear
ordering strategies start with the most similar sequence
pair and continue to add sequences to the alignment in
order of decreasing similarity. The linear ordering
strategies produce a good multiple alignment if all the
sequences belong to a single homologous family.
However, as pointed out by Taylor [[26]], these
strategies can produce a poor alignment if the
sequences belong to two or more distinct subfamilies.

To improve the tree-based methods, researchers
introduced sophisticated ordering strategies [[2], [5],
[7], [9], [10], [25]]. These strategies apply various
clustering techniques to order groups of related
sequences in a hierarchical tree. Then, the final
multiple alignment is obtained by combining clusters of

2

sequences to the most similar cluster in decreasing
order of relatedness. Using tree-based methods, the
order used to align and combine the sequences has a
great effect on the final multiple sequence alignment.
Consequently, a great deal of effort has been spent on
designing new ordering strategies that would generate
better alignments.

A few researchers [[3], [12], [14], [15]] have taken
the opposite approach by not ordering the sequences in
a systematic way. Instead, they applied randomized
techniques with optimization functions to iteratively
improve the multiple sequence alignment. These
iterative methods produce better alignments than the
tree-based methods and can be used to improve
alignments that were generated from a tree-based
method. However, they require a much longer
computation time. In this paper, we use the Berger-
Munson algorithm [[3]] to illustrate that the
computation times of these iterative methods can be
reduced significantly by using a parallel speculative
computation technique.

SEQUENCE ALIGNMENT
ALGORITHMS

Needleman and Wunsch [[21]] were the first to
introduce a heuristic algorithm for aligning two
biological sequences. Smith and Waterman [[24]] then
formulated a more rigorous dynamic programming
representation of this algorithm. Gotoh [[8]] followed
by improving the time complexity of the algorithm. Let
two sequences be A=a1a2a3...aM, and B=b1b2b3..bN and
let sub(ai,aj) be a given similarity score for substituting
residue ai by aj. The penalty for introducing a gap into
a sequence is defined by the penalty function wk=-uk-v,
(u,v≥0) where k is the gap length. The Gotoh
algorithm is given as follows:

S MAX

P

S sub a b

Q

P MAX
S w

P u

Q MAX
S w

Q u

i j

i j

i j i j

i j

i j
i j

i j

i j
i j

i j

,

,

,

,

,
,

,

,
,

,

(,)= +

=
+
+

=
+
+

− −

−

−

−

−

1 1

1 1

1

1 1

1

Si,j is the cumulative alignment score between two
sequences A and B up to the ith and jth positions. The
initial conditions are defined as follows: Si,0=Pi,0=Qi,0=0
and S0,j,P0,j=Q0,j=0, for 0≤i≤M and 0≤j≤N. As can be

seen, the similarity scores sub(a,b) between all possible
pairs of residues must first be defined before Si,j can be
calculated. For our application, we use the PAM250
[[6]] substitution scoring matrix to define the similarity
score between two residues.

To obtain the multiple sequence alignment, many
algorithms (including tree-based and iterative) align
two groups of sequences against each other a number of
times. To align two groups, X and Y, of sequences, the
algorithm of two-sequence alignment can be extended
as follows:

Si j MAX

Pi j
Si j sub Xi Yj
Qi j

,

,

, (,)

,

= − − + ′

1 1

sub X Y sub X Y

sub X X sub Y Y

i j k i l j
l

L

k

K

k i m i
m k

K

k

K

l j m j
m l

L

l

L

′ = +

+

==

= += = +=

∑∑

∑∑ ∑∑

(,) (,)

(,) (,)

, ,

, , , ,

11

11 11

K is the number of sequences in the X group and L in
the Y group. Pi,j, Qi,j, and the initial conditions remain
the same. If the sequences have already been aligned,
the alignment score can be calculated using the
following formula.

Score A sub A AN i k j k
k

L

j i

N

i

N
() (,), ,=

== +=
∑∑∑

111

where N is the number of sequences and L is the
number of aligned positions.

BERGER-MUNSON ITERATIVE
ALGORITHM

The Berger-Munson iterative improvement
algorithm has been successfully used to perform
multiple sequence alignment. Figure 1 shows the core
part of this algorithm. The C language implementation
contains approximately 1900 statements. To
implement a parallel version of this algorithm, we
separated the computational process into three steps. In
step 1, the n input sequences are first randomly
partitioned into two groups. Then, the alignment score
between these two groups of sequences is calculated. In
this step, the new gap positions are also saved for
performing the alignment in step 3. In step 2, a
decision flag is set to A (accepted) if the new resulting
alignment is accepted; otherwise, it is set to R
(rejected). A new alignment is accepted if the current
score is higher than the current best score. If the
decision flag in step 2 is set to A, the gap positions

3

determined in step 1 are used to modify the current
alignment in step 3 and the best score is updated.
Then, the modified or unmodified alignment is used as
the input for the next iteration. This iterative
improvement algorithm continues until the stop
criterion is met. We define the stop criterion as
follows. After q consecutive iterations of rejections, the
process is stopped where q is the number of all possible
partitions.

best_score=initial_score();
While (stop criteria is not met){

1 current_score = calculate(seq, gap_positions);
2 flag = decide(current_score, best_score);
3 seq = modify(seq, flag, gap_positions);

}

Figure 1. Berger-Munson Sequential Algorithm.

The Berger-Munson algorithm is highly sequential
due to a loop-carried dependence between iterations.
Iteration i depends on iteration (i-1) since step 3 may
modify the alignment during the (i-1)th iteration and
the modified alignment must be used by the ith
iteration. In addition, the three steps within each
iteration are also dependent on each other. Step 1 uses
seq which may be modified by step 3. Step 2 uses
current_score which produces by step 1. Step 3 uses
flag variable which is set in step 2 and gap positions
which are generated in step 1. These dependencies
make it difficult to implement a parallel version of this
algorithm while preserving the behavior of the original
sequential version.

REVIEW OF A PRIOR BERGER-
MUNSON PARALLELIZATION EFFORT

Ishikawa et al. [[11]] previously implemented a
parallel version of the Berger-Munson algorithm on a
parallel inference machine (PIM) using a parallel logic
programming language (KL1). This parallel approach
can be described as follows. All (2n-1 -1) possible

partitions or n
n n+ −()1

2
 restricted partitions, which

are defined later in the Alignment Search Space
section, are evaluated simultaneously in parallel. The
resultant alignment which has the best score is selected
as the input for the next iteration. One processor is
used as the manager and the remaining processors as
workers. Initially, the manager distributes each
possible partition to a worker. When a worker finishes
its calculation, it sends its alignment to the manager.
Based on all the alignments collected from the workers,

the manager selects the best alignment to be used as the
input for the next iteration.

The approach taken by Ishikawa et al. [[11]] has a
few drawbacks. First, it becomes impractical for a
large number of sequences. For example,
approximately 1090 processors are needed to align 300
sequences if the unrestricted search space is used or
45,150 processors for the restricted space. Their
implementation can be modified so that a large number
of sequences can be aligned by dividing the number of
partitions among the available processors as evenly as
possible. However, it is still too costly to evaluate all
partitions at each iteration. In the sequential version,
only one random partition is evaluated at each iteration.
Second, the parallel version is no longer a randomized
process and its resultant alignment is not guaranteed to
be as good as the one that is obtained from the original
sequential version. That is, the quality of the derived
alignment is unpredictable. Therefore, it is difficult to
evaluate its performance. Third, the communication
cost of the Ishikawa version can be reduced
significantly.

In their approach, the sequences were sent back and
forth between the manager and workers twice per
parallel iteration. The manager sends the input
sequences with the partition information to all the
workers at the beginning of each iteration and all the
workers send their alignments to the manager when
they are done. As a result, the communication cost per
iteration is approximately 2pnm, where p is the number
of processors, n is the number of sequences, and m is
the length of the longest aligned sequence (original
residues plus gaps). In our approach, we do not send
sequences between processors. Only the gap and
partition information are sent. As a result, our
communication cost is approximately 2m since only one
array of length m is used to hold the gap positions of
each group. For large p and n, our communication cost
is negligible in comparison to their approach.

PARALLEL SPECULATIVE
BERGER-MUNSON ALGORITHM

Speculative computation [[22], [23], [27]] has been
applied efficiently to parallelize sequential algorithms
like simulated annealing, an algorithm similar to the
Berger-Munson algorithm. By applying speculative
computation to the parallelization of the Berger-
Munson algorithm, we were able to achieve a higher
speedup and a more scalable implementation than the
prior effort mentioned above. In addition, our parallel
alignment is guaranteed to be the same as the
sequential one. The basic concept of speculative

4

computation is to speculate the future solutions based
on the current input parameters. Therefore, we can
speculate (p-1) future solutions if we have p processors.
In this application, we can speculate the alignments for
the next (p-1) iterations based on the current alignment.

In the original Berger-Munson algorithm, the final
alignment is obtained by performing a sequence of
alignments between two groups of sequences. Each
iteration is accepted (A) if its alignment score is higher
than the current best score. Otherwise, it is rejected
(R). An example of a corresponding sequence of
decisions is shown in Figure 2. Initially, every new
alignment is accepted (e.g., iteration numbers 1-5).
However, fewer and fewer are accepted as the
alignment progresses. We stated earlier that the ith
iteration may depend on the (i-1)th iteration. To be
exact, the ith iteration depends on (i-1)th iteration only
if the (i-1)th iteration has accepted a new alignment;
otherwise, it only depends on the last accepted iteration.

Our parallel speculative computation approach is
based on the recognition of the fact that a consecutive
sequence of rejected iterations are not dependent on
each other and can be done in parallel. Therefore, we
can speculate that the (p-1) previous iterations will be
rejected so that they can be done in parallel. If the
speculations are correct, the computation time could be
reduced by a factor of p.

In the decision sequence of Figure 2, the first 28
sequential iterations can be reduced to 13 parallel steps
if 4 processors are used. The parallel computation steps
are shown in Figure 3. Three iterations (p-1) are
speculated at each parallel step where P1 speculates that
P0 will reject its new alignment, P2 speculates that P0

and P1 will reject their new alignments, and P3

speculates that P0 to P2 will reject their new alginments.

P0 does not speculate. The numbers in the boxes of
each row represent the speculated sequential iteration
numbers for the processor in that row at each parallel
step. The iteration numbers that are speculated
correctly, which also correspond to the sequential
iteration number, are shown in bold. After each
parallel step, the alignment of the last iteration that was
speculated correctly is used as the input for the next
step as shown by the lines leading from one parallel
step to the next.

As the above illustration shows, we parallelized the
Berger-Munson algorithm while preserving its
sequential algorithmic behavior. The parallel
alignment is guaranteed to be the same as the
sequential one. For a large number of sequences, this
algorithm can benefit significantly from parallel
computation. Our parallel algorithm, which is
implemented on every processor, is summarized in
Figure 4 as C pseudocode with minor details omitted to
improve clarity.

The variable gi is the global or sequential iteration
number; bgi is the iteration number when the best score
was obtained; q is the number of all possible partitions;
partn is a selected partition number for each individual
processor; p is the number of processors; pid is the
processor id ranging from 0 to (p-1) and ap is the id of
the processor that has accepted the best alignment.

To reduce the I/O time, only processor 0 reads the
input sequences and then broadcasts them to the other
processors since inter-processor data transfer is much
faster than the I/O data transfer. Initially, every new
alignment is usually accepted. As a result, we do not
start to speculate until we encounter a rejection, (see
lines 4 to 11). Every processor evaluates the same
partition by initializing the same random seed. This

Sequential Iteration number 1 2 3 4 5 6 7 . . .
Decision sequence AAAAARAAARRARRRARRRARRRARRRRR ...

Figure 2. A Possible Sequential Decision Sequence.

P a r a l l e l S t e p
1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 8 9 10 13 17 21 25

Processor 1 2 3 4 5 6 7 9 10 11 14 18 22 26
Number

2 3 4 5 6 7 8 10 11 12 15 19 23 27

3 4 5 6 7 8 9 11 12 13 16 20 24 28

Figure 3. An Illustration of the Parallel Speculative Computation Process.

5

strategy avoids the communication cost associated with
the parallel speculative computation. The iteration
number is used as the random seed so that we can
easily backtrack our steps when we make an incorrect
speculation. This technique is also used to guarantee
that the sequence of pairwise alignments is the same for
both the parallel and sequential implementations.

1 processor 0 reads input sequences and broadcasts them to
other processors.

 2 gi = 0;
 3 best_score = initial_score();
 4 Do {
 5 seed(gi); /*all processors set the same iteration seed gi*/
 6 partn = select_partition();
 7 current_score = calculate(seq, partn, gap_positions);
 8 flag = decide(current_score, best_score);
 9 seq = modify(seq, partn, flag, gap_positions);
10 gi = gi + 1;
11 }While (flag == A);
12 clear_partitions();
13 While((gi - bgi) < q){
14 for(i = 0; i < p; i++){
15 seed(gi + i);
16 itemp = select_partition();
17 set_partition(itemp);
18 if (i == pid) partn = itemp;
19 }
20 current_score = calculate(seq, partn, gap_positions);
21 flag = decide(current_score, best_score);
22 global_operation(ap, flag, best_score, partn, gap_positions);
23 seq = modify(seq, partn, flag, gap_positions);
24 if(flag == A){
25 gi = gi + ap + 1;
26 clear_partitions();
27 }
28 else gi = gi + p;

Figure 4. Parallel Speculative
Berger-Munson Algorithm.

After a rejection is encountered, we start to speculate
and continue until q (number of all possible partitions)
rejections have been encountered. A random partition
is selected only if it has not already been selected since
the last accepted partition. That is, no partition is
selected more than once by any processor or by
different processors simultaneously. To ensure that no
partition is selected more than once, each processor
must know two pieces of information: the partitions
that have already been selected and the partitions that
are currently being selected by other processors. To
avoid the costly inter-processor communication, these
two pieces of information are obtained as follows. Each
processor manages an array of q bits which correspond
to the q possible partitions. Initially, these bits are
cleared by a function in line 12. Then, the ith bit is set
when the ith partition is selected. Therefore, each
processor knows that a particular partition has already
been selected if its corresponding bit is set. When this

situation occurs, it simply selects another random
partition. All q bits are cleared every time a new
partition is accepted. To determine the partitions that
are being selected by other processors, each processor
generates p random selectable partitions instead of just
one and then selects the (pid)th one as show in lines
14-19. The remaining partitions are being selected by
the other processors. All p bits that are corresponding
to the p selectable partitions are set.

The global operation (line 22) is performed after
each processor makes its decision. The accepted
alignment with the smallest iteration number is selected
as the input for the next iteration since the alignments
with higher iteration numbers are invalid. That is, they
were based on incorrect speculations. When a new
partition is accepted, the contents of variables (ap, flag,
best_score, partn, gap_posititons) are copied from the
accepted processor to the other processors.

In lines 24-28, we determine the number of
sequential iterations which were correctly speculated
for skipping. If there is a global accepted partition
(iteration) among the p partitions evaluated, only the
iterations smaller than or equal to the accepted iteration
are skipped (line 25). Otherwise, all p iterations are
skipped (line 28).

ALIGNMENT SEARCH SPACE

We adapted the restricted search space as presented
by Ishikawa et al. [[11]] who observed that the number
of sequences in the divided groups had a great effect on
the final alignment. They observed that if only one or
two sequences were allowed in the first group, a better
alignment was obtained. Our experiments yield the
same observation. If only one or two sequences are
allowed in one of the two groups, the number of

possible partitions is reduced to n
n n+ −()1

2
 from a

total of 2 1 1n − − . We represent a restricted partition
by a single random number. This number is then used
to generate a sequence of 2 or 3 unique numbers. The
first number is the number of sequences in the first
group and the following one or two numbers
representing the sequence numbers in this group. The
remaining sequences are placed into the second group.

RESULTS

To evaluate the performance of our approach, we
have used it to improve the alignments generated
manually by experts, Kabat et al. [[13]], and
automatically by a popular program, CLUSTALV [[9],

6

[10]], which uses a tree-based method. Three different
groups of immunoglobulin sequences with varying
lengths and numbers of sequences were selected from
the Kabat Database (Beta Release 5.0) which is
maintained by Kabat et al [[13]]. Their statistical
summaries are shown in Table 1. The average
sequence length is about the same for all three groups.
However, the number of sequences in the third group is
about twice the second one which is about twice the
first one. MKL5 is the largest group in this database.
CLLC is the chicken immunoglobulin lambda light
chains V-region group. HHC3 is the human
immunoglobulin heavy chains subgroup III V-region
group. MKL5 is the mouse immunoglobulin kappa
light chains V V-region group. The initial score is the
score before any alignment is performed.

Table 1. Statistical Summaries of the
Three Groups of Test Sequences.

Group
Name

Number
of Sequences

Average
Length

Initial
Score (103)

CLLC 93 62 1,575
HHC3 185 65 6,651
MKL5 324 83 31,394

The scores of the alignments manually generated by
experts, Kabat et al. [[13]] and their improved scores
performed by the sequential Berger-Munson program,
MUSEQAL, are shown in Table 2. The number of
iterations and the sequential computation times taken
by MUSEQAL are also shown in this table. These
sequential computation times were obtained from
executing a sequential program on a single processor.
Similarly, we used MUSEQAL to improve the
alignments generated by CLUSTALV. The
corresponding information is presented in Table 3.
Comparing Table 2 and Table 3, we can see that
MUSEQAL improved the alignments generated by both
Kabat et al. and CLUSTALV significantly. The
sequential computation times in these tables are used to
calculate the speedup factors of the parallel speculative
Berger-Munson algorithm in the next table.

Table 4 shows the speedup factors for the three
groups of sequences on varying numbers of processors.
The speedup factor is defined as the ratio of the total
run time of the sequential version of the program to the
total run time of the parallel version. Table 4
demonstrates that significant speedups were obtained
for all three groups of sequences. From this table, we
can make three observations. First, we obtained the
best speedup factors with the largest group, MKL5.
Second, we obtained better efficiencies by using a
smaller number of processors where efficiency is

defined as the ratio of the speedup factor to the number
of processors. Third, we achieved higher speedup
factors when improving the Kabat alignments
compared to CLUSTALV alignment improvement.
The results of the first two observations are as expected.
The first observation was due to a larger number of
partitions (search space) and the second to less
communication and lower rates of incorrect
speculations. For a larger number of processors, we
had to speculate further into the future which resulted
in a higher error rate. The third observation is due to
the fact that the Kabat alignments were already better
than the CLUSTALV alignments. As a result, there
were more rejections in improving the Kabat
alignments than the CLUSTALV alignments.

Table 2. Kabat and MUSEQAL
Alignment Score Comparison

Group
Name

Kabat
Score (103)

MUSEQAL
Score (103)

Number
of Iterations

Sequential Run
Time (103 s)

CLLC 1,827 1,957 16,193 55
HHC3 7,505 7,681 56,232 567
MKL5 38,569 38,766 112,374 2,535

Table 3. CLUSTALV and MUSEQAL
Alignment Score Comparison.

Group
Name

CLUSTALV
Score (103)

MUSEQAL
Score (103)

Number
of Iterations

Sequential Run
Time (103 s)

CLLC 1,809 1,957 12,716 36
HHC3 7,366 7,655 58,285 564
MKL5 37,778 38,749 112,390 2,611

Table 4. Parallel Speculative Berger-Munson
Algorithm Speedup Factors.

Number of
Processors

Speedup
w.r.t Kabat Alignment

Speedup
w.r.t CLUSTAL Alignment

CLLC HHC3 MKL5 CLLC HHC3 MKL5
1 1.0 1.0 1.0 1.0 1.0 1.0
2 1.8 1.9 1.9 1.8 1.8 1.9
4 3.4 3.4 3.8 3.3 3.3 3.7
8 6.4 6.2 7.3 6.1 5.9 7.1

16 11.6 11.4 14.1 10.7 10.7 13.6
32 19.5 20.8 28.3 17.0 19.4 26.3
64 29.5 38.1 53.1 23.8 35.1 50.7

DISCUSSION

The Berger-Munson iterative method is a good tool
for improving the alignments generated by other
methods. As an improvement tool, it can never
generate a worse alignment than other methods. Its
computation time is significantly reduced by using a
parallel speculative computation technique. We also

7

think that the computation of other iterative methods
[[3], [12], [14], [15]] can also be reduced by using a
parallel speculative computation approach.

It is difficult to accurately compare our speedup
factors with that obtained by Ishikawa et al. [[11]] since
their parallel algorithm does not always generate the
same alignment as the sequential one. To evaluate
their parallel algorithm, they aligned 7 sequences
which has 63 possible partitions that were assigned to
63 processors. Their parallel implementation stops
after no improvement was obtained. Their sequential
(single processor) implementation stops after 32
iterations of no improvements, about one half of the
number of partitions. For the sequential execution,
they used different random seeds to generate different
alignments. On average, they obtained a speedup factor
of ten. We obtained a speedup range of 23 to 53 with
our speculative method.

In spite of the above difficulty, our results clearly
showed that our speedup factors are about three to five
times higher than those obtained by Ishikawa et al. In
addition, we were able to achieve higher speedup
factors without changing the algorithmic behavior of
the original sequential algorithm.

REFERENCES

[1] G.J. Barton, and M.J.E. Sternberg, “A Strategy
For The Rapid Multiple Alignment Of Protein
Sequences,” J. Mol. Bio., (1987), pp. 327-337.

[2] G.J. Barton, “Protein Multiple Sequence
Alignment And Flexible Pattern Matching,”
Methods Enzymol., (1990), pp. 403-427.

[3] M.P. Berger, and P.J. Munson, “A Novel
Randomized Iterative Strategy For Aligning
Multiple Protein Sequences,” Comput. Appl.
Biosci., (1991), pp. 479-484.

[4] H. Carillo, and D. Lipman, “The Multiple
Sequence Alignment Problem In Biology,” SIAM
J. Appl. Math., (1988), pp. 197-209.

[5] F. Corpet, “Multiple Sequence Alignment With
Hierarchical Clustering,” Nucleic Acids Research,
(1988), pp. 10881-10891.

[6] M.O. Dayhoff, R.M. Schwartz, and B.O. Orcutt,
“A Model Of Evolutionary Change In Proteins,”
In Dayhoff (ed) , Atlas of Protein Sequence and
Structure Vol. 5, Suppl. 3, Nat. Biomed. Res.
Found., Washington, D.C., (1978), pp.345-352.

[7] D.F. Feng, and R.F. Doolittle, “Progressive
Alignment And Phylogenetic Tree Construction
Of Protein Sequences,” Methods Enzymol.,
(1990), pp. 375-387.

[8] O. Gotoh, “An Improved Algorithm For Matching
Biological Sequences,” J. Mol. Biol., (1982), pp.
705-708.

[9] D.G. Higgins, and P.M. Sharp, “CLUSTAL: A
Package For Performing Multiple Sequence
Alignment On A Microcomputer,” Gene, (1988),
pp. 237-244.

[10] D.G. Higgins, and P.M. Sharp, “Fast And
Sensitive Multiple Sequence Alignments On A
Microcomputer,” Comput. Appl. Biosci, (1989),
pp. 151-153.

[11] M. Ishikawa, M. Hoshida, M. Hirosawa, T. Toya,
K. Onizuka, and K. Nitta, “Protein Sequence
Analysis By Parallel Inference Machine,”
Proceedings of the international conference on
fifth generation computer systems, (June, 1992),
pp. 57-62 and 294-299.

[12] M. Ishikawa, T. Toya, M. Hoshida, K. Nitta, A.
Ogiwara, and M. Kanehisa, “Multiple Sequence
Alignment By Parallel Simulated Annealing,”
Comput. Appl. Biosci., (1993), pp. 267-273.

[13] E.A. Kabat, T.T. Wu, H.M. Perry, K.S.
Gottesman, and C. Foeller, “Sequence Of Proteins
Of Immunological Interest,” U.S. Dept. of Health
and Human Services, Public Health Service,
National Institutes of Health, NIH Publication No.
91-3242, (1991).

[14] J. Kim, S. Pramanik, and M.J. Chung, “Multiple
Sequence Alignment Using Simulated
Annealing,” Comput. Appl. Biosci., (1994), pp.
419-426.

[15] C.E Lawrence, S.F. Altschul, M.S. Boguski, J.S.
Liu, A.F. Neuwald, J.C. Wootton, “Detecting
Subtle Sequence Signals: A Gibbs Sampling
Strategy For Multiple Alignment,” Science,
(1993), pp. 208-214.

[16] D.J. Lipman, S.F. Altschul, and J.D. Kececioglu,
“A Tool For Multiple Sequence Alignment,”
Proc. Natl. Acad. Sci. USA, (1989), pp. 4412-
4415.

[17] H.M. Martinez, “A Flex Multiple Sequence

8

Alignment Program,” Nucleic Acids Research,
(1988), pp. 1683-1691.

[18] E. Myers, and W. Miller, “Optimal Alignments in
Linear Space,” Comput. Appl. Biosci., (1988), pp.
11-17.

[19] M. Murata, J.S. Richardson, and J.L. Sussman,
“Simultaneous Comparison Of Three Protein
Sequences,” Proc. Natl. Acad. Sci. USA, (1985),
pp. 3073-3077.

[20] M. Murata, “Three-way Needleman-Wunsch
algorithm,” Methods Enzymol., (1990), pp. 365-
375.

[21] S.B. Needleman, and C.D. Wunsch, “A General
Method Applicable To The Search For
Similarities In The Amino Acid Sequences Of
Two Proteins,” J. Mol. Biol. , (1970), pp. 443-
453.

[22] A. Sohn, Z. Wu, and X. Jin, “Parallel Simulated
Annealing By Generalized Speculative
Computation,” Proceedings of the Fifth IEEE

Symposium on Parallel and Distributed
Processing, Dallas, Texas, (December 1993).

[23] A. Sohn, “Parallel Speculative Computation Of
Simulated Annealing,” Proceedings of the
International Conference on Parallel Processing,
August, (1994), pp. III8-11.

[24] T.F. Smith, and M.S. Waterman, “Identification
Of Common Molecular Subsequence,” J. Mol.
Biol., (1981), pp. 195-197.

[25] W.R. Taylor, “Multiple Sequence Alignment By
Pairwise Algorithm,” Comput. Appl. Biosci.,
(1987), pp. 81-87.

[26] W.R. Taylor, “A Flexible Method To Align Large
Numbers Of Biological Sequences,” J. Mol. Evol.,
(1988), pp. 161-169.

[27] E.E. Witte, R.D. Chamberlain, and M.A.
Flanklin, “Parallel Simulated Annealing Using
Speculative Computation,” IEEE Transactions on
Parallel and Distributed Systems, (1991), pp. 483-
494.

